cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380094 E.g.f. A(x) satisfies A(x) = ( 1 + 3*x*exp(x*A(x)) )^(1/3).

Original entry on oeis.org

1, 1, 0, 7, -28, 405, -4514, 75313, -1336824, 28494793, -672782950, 17874984501, -521966931716, 16702822898749, -579928752836874, 21736834275178345, -874384126286848624, 37581186999500130321, -1718628399364227445070, 83327485224351815544925
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^k*k^(n-k)*binomial(n/3-k/3+1/3, k)/((n-k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(n/3-k/3+1/3,k)/( (n-k+1)*(n-k)! ).

A380133 Expansion of e.g.f. sqrt(1 + 2*x*exp(x)).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, -9, 70, -335, 504, 11935, -182094, 1525833, -4911764, -99495473, 2430329070, -29988416159, 158542630224, 2868272912511, -102775471991126, 1714422613948345, -13166449628575404, -209400601689898289, 10598981162761786950, -227206614609529433199
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^k*k^(n-k)*binomial(1/2, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} 2^k * k^(n-k) * binomial(1/2,k)/(n-k)!.
Showing 1-2 of 2 results.