cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A379688 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - 2*x*exp(x)) ).

Original entry on oeis.org

1, 2, 20, 366, 9992, 365130, 16769292, 929022206, 60323670416, 4494465562770, 378025706776340, 35434198578761862, 3663111561838580568, 414057463231218044186, 50805545997014472821276, 6725525908390393438264590, 955435863749903677193184032, 144987884255349864723586105122
Offset: 0

Views

Author

Seiichi Manyama, Dec 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*(n-k)^k*(2*n-k)!/(k!*(n-k)!))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * (n-k)^k * (2*n-k)!/(k! * (n-k)!).
E.g.f. A(x) satisfies A(x) = 1/( 1 - 2*x*A(x)*exp(x*A(x)) ).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380095.

A380096 E.g.f. A(x) satisfies A(x) = 1/( 1 - 3*x*A(x)^3*exp(x*A(x)^3) )^(1/3).

Original entry on oeis.org

1, 1, 12, 289, 10724, 540745, 34551886, 2676439507, 243782162408, 25535467766593, 3024360522754010, 399665508962874451, 58301379215119084012, 9305724270031402836337, 1613262216112899513140630, 301870732625016111841693795, 60639884085040694650040518736
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 3^k*k^(n-k)*binomial(n+k+1/3, k)/((3*n+3*k+1)*(n-k)!));

Formula

E.g.f.: ( (1/x) * Series_Reversion(x*(1 - 3*x*exp(x))) )^(1/3).
a(n) = n! * Sum_{k=0..n} 3^k * k^(n-k) * binomial(n+k+1/3,k)/( (3*n+3*k+1)*(n-k)! ).
a(n) = (n!/(3*n+1)) * Sum_{k=0..n} (-3)^k * k^(n-k) * binomial(-n-1/3,k)/(n-k)!.
Showing 1-2 of 2 results.