cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380133 Expansion of e.g.f. sqrt(1 + 2*x*exp(x)).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, -9, 70, -335, 504, 11935, -182094, 1525833, -4911764, -99495473, 2430329070, -29988416159, 158542630224, 2868272912511, -102775471991126, 1714422613948345, -13166449628575404, -209400601689898289, 10598981162761786950, -227206614609529433199
Offset: 0

Views

Author

Seiichi Manyama, Jan 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^k*k^(n-k)*binomial(1/2, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} 2^k * k^(n-k) * binomial(1/2,k)/(n-k)!.

A380157 Expansion of e.g.f. (1 + 3*x*exp(3*x))^(1/3).

Original entry on oeis.org

1, 1, 4, 1, -44, 265, 2458, -48419, -99320, 12598417, -82133810, -4205894891, 86494587292, 1457086105657, -79743685096670, -88062957588275, 77425160027442832, -1138977883460384735, -76951663963327663082, 2978943480750081242629, 64353221406902873516260
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^n*n!*sum(k=0, n, k^(n-k)*binomial(1/3, k)/(n-k)!);

Formula

a(n) = 3^n * n! * Sum_{k=0..n} k^(n-k) * binomial(1/3,k)/(n-k)!.
a(n) == 1 (mod 3).
Showing 1-2 of 2 results.