A380162 a(n) is the value of the Euler totient function when applied to the largest square dividing n.
1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 2, 1, 1, 1, 8, 1, 6, 1, 2, 1, 1, 1, 2, 20, 1, 6, 2, 1, 1, 1, 8, 1, 1, 1, 12, 1, 1, 1, 2, 1, 1, 1, 2, 6, 1, 1, 8, 42, 20, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 1, 6, 32, 1, 1, 1, 2, 1, 1, 1, 12, 1, 1, 20, 2, 1, 1, 1, 8, 54, 1, 1, 2, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[e == 1, 1, (p-1)*p^(2*Floor[e/2]-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1, 1, (f[i, 1]-1) * f[i, 1]^(2*(f[i, 2]\2)-1)));}
Formula
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A000010(n), with equality if and only if n is either a square (A000290) or twice an odd square (A077591 \ {1}).
Multiplicative with a(p) = 1, and a(p^e) = (p-1)*p^(2*floor(e/2)-1) if e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) / (zeta(2*s-1) * zeta(2*s)).
Sum_{k=1..n} a(k) ~ c * n^(3/2) / 3, where c = zeta(3/2)/(zeta(2)*zeta(3)) = 1.32118019580177760682... .