A380165 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is an exponentially odd number.
1, 1, 2, 1, 4, 2, 6, 4, 1, 4, 10, 2, 12, 6, 8, 1, 16, 1, 18, 4, 12, 10, 22, 8, 1, 12, 18, 6, 28, 8, 30, 16, 20, 16, 24, 1, 36, 18, 24, 16, 40, 12, 42, 10, 4, 22, 46, 2, 1, 1, 32, 12, 52, 18, 40, 24, 36, 28, 58, 8, 60, 30, 6, 1, 48, 20, 66, 16, 44, 24, 70, 4, 72
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], (p-1)*p^(e-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1), 1));}
Formula
a(n) >= 1, with equality if and only if n is either a square (A000290) or twice and odd square (A077591 \ {1}).
Multiplicative with a(p^e) = (p-1)*p^(e-1) if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 - 1/p^s + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-1) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.50115112192510092436... .