A380217 Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.
1, 15, 42, 54, 75, 77, 95, 99, 100, 132, 182, 195, 221, 234, 245, 253, 290, 312, 315, 329, 350, 357, 405, 420, 423, 437, 450, 459, 476, 494, 510, 540, 555, 559, 560, 612, 627, 665, 715, 720, 740, 798, 816, 833, 854, 855, 858, 893, 897, 899, 979, 1026, 1064
Offset: 1
Keywords
Examples
The prime indices of 75 are {2,3,3}, with product 18 and sum 8, and since 18 is a multiple of 8+1, 75 is in the sequence. The terms together with their prime indices begin: 1: {} 15: {2,3} 42: {1,2,4} 54: {1,2,2,2} 75: {2,3,3} 77: {4,5} 95: {3,8} 99: {2,2,5} 100: {1,1,3,3} 132: {1,1,2,5} 182: {1,4,6} 195: {2,3,6} 221: {6,7} 234: {1,2,2,6} 245: {3,4,4}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Divisible[Times@@prix[#],1+Total[prix[#]]]&]
-
PARI
vpind(n)=my(v=List(), f=factor(n)); for(i=1, #f~, for(j=1, f[i, 2], listput(v, primepi(f[i, 1])))); Vec(v); \\ A112798 isok(k) = my(vind = vpind(k)); (vecprod(vind) % (vecsum(vind)+1)) == 0; \\ Michel Marcus, Jan 21 2025
Formula
a(n) = A379319(n)/2.
Comments