A380275 Sum of the fourth powers of the coefficients of q in the q-factorials.
1, 1, 2, 34, 2710, 669142, 403186412, 504370709488, 1170803949124848, 4644277674894466168, 29557755573424568318844, 287158619888775996039794756, 4090368591132420991019182924018, 82628355729998755756059701468470738, 2301817961412922763844330401786521588244
Offset: 0
Keywords
Examples
a(4) = 1^4 + 3^4 + 5^4 + 6^4 + 5^4 + 3^4 + 1^4 = 2710.
Links
- Eric Weisstein's World of Mathematics, q-Factorial.
Programs
-
Mathematica
Table[Total[CoefficientList[Expand[Product[Sum[x^i, {i, 0, m}], {m, 1, n-1}]], x]^4], {n, 0, 15}]
-
PARI
a(n) = my(v=Vec(prod(k=1, n, (1-q^k)/(1-q)))); sum(i=1, #v, v[i]^4); \\ Michel Marcus, Jan 18 2025
Formula
a(n) = Sum_{k>=0} A008302(n,k)^4.
Conjecture: a(n) ~ 27*sqrt(2) * n!^4 / (Pi^(3/2) * n^(9/2)).
Comments