cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380281 Triangle T(n, k) read by rows: T(n, k) = 2^n*binomial(2*n + 1, 2*k + 1) * Pochhammer(1/2, n - k) * Pochhammer(1/2, k).

Original entry on oeis.org

1, 3, 1, 15, 10, 3, 105, 105, 63, 15, 945, 1260, 1134, 540, 105, 10395, 17325, 20790, 14850, 5775, 945, 135135, 270270, 405405, 386100, 225225, 73710, 10395, 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135, 34459425, 91891800, 192972780, 275675400, 268017750, 175429800, 74220300, 18378360, 2027025
Offset: 0

Views

Author

Thomas Scheuerle, Jan 18 2025

Keywords

Examples

			Triangle begins:
n\k      0 |      1 |      2 |      3 |      4 |       5 |      6 |     7 |
[0]       1,
[1]       3,       1
[2]      15,      10,       3
[3]     105,     105,      63,       15
[4]     945,    1260,    1134,      540,     105
[5]   10395,   17325,   20790,    14850,    5775,     945
[6]  135135,  270270,  405405,   386100,  225225,   73710,   10395
[7] 2027025, 4729725, 8513505, 10135125, 7882875, 3869775, 1091475, 135135
		

Crossrefs

T(n, 1) = A001147(n+1), T(n, 2) = A000457(n-1), T(n, 3) = A001881(n+3)*3, T(n, n) = A001147(n).
Cf. A076729, (conj. row sums), A103327, A173424.

Programs

  • Maple
    T := (n,k) -> 2^n*binomial(2*n + 1, 2*k + 1)*pochhammer(1/2, n - k)*pochhammer(1/2, k):
    for n from 0 to 7 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Jan 21 2025
  • Mathematica
    A380281[n_, k_] := (2*n - 1)!!*Binomial[n, k]*Binomial[2*n + 1, 2*k + 1]/Binomial[2*n, 2*k];
    Table[A380281[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 22 2025 *)
  • PARI
    T(n, k) = Vec(O(x^(1+n))+(1+x)^(n+1)*hypergeom([1,1/2+n+1],3/2,-x)*(2*(n+1))!/(2^(n+1)*(n+1)!))[1+k]
    
  • PARI
    doublefact(n) = prod(i=0, (n-1)\2, n - 2*i )
    T(n, k) = doublefact(2*n-1) * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k)
    
  • SageMath
    rf = rising_factorial
    def T(n, k): return 2^n*binomial(2*n+1, 2*k+1)*rf(1/2, n-k)*rf(1/2, k)
    for n in range(9): print([T(n, k) for k in range(n+1)])  # Peter Luschny, Jan 21 2025

Formula

Coefficients for the series representation of Owen's T-function Ot(x, m) = atan(m)/(2*Pi) + Sum_{s>=0} (-1)^(s+1)*m*(Sum_{r=0..s} T(s, r)*m^(2*s))*x^(2+2*s)/(2*Pi*(2+2*s)!).
Ot(x, m) - atan(m)/(2*Pi) = -V(x, x*m), where V is Nicholson's V-function. V(h, q) = Integral_{x=0..h} Integral_{y=0..q*x/h} phi(x)*phi(y) dydx, where phi(x) is the standard normal density exp(-x^2/2)/sqrt(2*Pi).
G.f. of row n: ((1 + x)^(n+1)*Hypergeometric2F1[1, 1/2 + n + 1, 3/2, -x]*(2*(n+1))!)/(2^(n+1)*(n+1)!).
T(n, k) = A103327(n, k)*A173424(n, k).
T(n, k) = (2*n-1)!! * binomial(n, k) * binomial(2*n+1, 2*k+1) / binomial(2*n, 2*k).
Conjecture: Row sums are A076729.