A380289 Unitary Double Zumkeller numbers: numbers whose set of unitary divisors can be partitioned into two disjoint sets with equal sums and equal cardinalities.
30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834, 858, 870, 894, 906, 910, 930, 942, 966, 978, 990
Offset: 1
Keywords
Examples
Let D be the set of unitary divisors of 210. D = {1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210} = {1,2,5,6,14,15,35,210}union{3,7,10,21,30,42,70,105}.
Links
- Bhabesh Das, On unitary Zumkeller numbers, Notes on Number Theory and Discrete Mathematics, Vol. 30, No. 2 (2024), pp. 436-442.
- Eric Weisstein's World of Mathematics, Unitary Divisor Function.
- Wikipedia, Unitary divisor.
Programs
-
Mathematica
uDiv[n_]:=Block[{d=Divisors[n]},Select[d,GCD[#,n/#]==1&]];uZNQ[n_]:=Module[{d=uDiv[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]];dZNQ[n_]:=Block[{div=uDiv[n]},!IntegerQ@Sqrt[n]&&MemberQ[Total/@Subsets[div,{Length@div/2}],Total@div/2]];Select[Range[1000],uZNQ[#]&&dZNQ[#]&]
Comments