A380291 a(n) = [x^n] G(x)^n, where G(x) = Product_{k >= 1} (1 + x^k)^(k^2) is the g.f. of A027998.
1, 1, 9, 64, 425, 3026, 21672, 157095, 1149289, 8464240, 62683134, 466307865, 3482008904, 26083955002, 195932407939, 1475267031164, 11131100990825, 84140066313620, 637054366975740, 4830417047590165, 36674477204674750, 278779034863684377, 2121418004609211361, 16159262748227985561
Offset: 0
Examples
Examples of supercongruences: a(7) - a(1) = 157095 - 1 = 2*(7^3)*229 == 0 (mod 7^3) a(11) - a(1) = 466307865 - 1 = (2^3)*(11^3)*43793 == 0 (mod 11^3) a(3*7) - a(3) = 278779034863684377 - 64 = (7^4)*43*26891*100413601 == 0 (mod 7^4)
References
- R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Maple
with(numtheory): s_3 := n-> add((-1)^(n/d+1)*d^3, d in divisors(n)): G(x) := series(exp(add(s_3(k)*x^k/k, k = 1..23)), x, 24): seq(coeftayl(G(x)^n, x = 0, n), n = 0..23);
-
Mathematica
Table[SeriesCoefficient[Product[(1 + x^k)^(n*k^2), {k, 1, n}], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *) (* or *) Table[SeriesCoefficient[Exp[n*Sum[Sum[(-1)^(k/d + 1)*d^3, {d, Divisors[k]}]*x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jul 30 2025 *)
Formula
a(n) = [x^n] exp(n*Sum_{k >= 1} s_3(k)*x^k/k), where s_3(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3 = A078307(n).
a(n) ~ c * d^n / sqrt(n), where d = 7.7846790125019502578773343468308844201627754275100035492213697757399421948... and c = 0.2484592487737716543953469621097743519172686743284742545545347906986158... - Vaclav Kotesovec, Jul 30 2025
Comments