A380306 Irregular triangle read by rows: T(n,k) is the number of rooted binary normal unlabeled galled trees with n leaves and exactly k galls, 0 <= k <= floor((n-1)/2).
1, 1, 1, 1, 2, 4, 3, 15, 2, 6, 48, 18, 11, 148, 107, 6, 23, 435, 528, 78, 46, 1250, 2295, 661, 19, 98, 3512, 9185, 4356, 346, 207, 9726, 34503, 24564, 3776, 67, 451, 26587, 123612, 123825, 31289, 1543, 983, 71975, 426218, 574149, 216501, 20720, 246
Offset: 1
Examples
Triangle begins: 1; 1; 1, 1; 2, 4; 3, 15, 2; 6, 48, 18; 11, 148, 107, 6; 23, 435, 528, 78; 46, 1250, 2295, 661, 19; 98, 3512, 9185, 4356, 346; 207, 9726, 34503, 24564, 3776, 67; 451, 26587, 123612, 123825, 31289, 1543; 983, 71975, 426218, 574149, 216501, 20720, 246; 2179, 193200, 1425011, 2493129. 1316450, 206644, 6942;
Links
- Lily Agranat-Tamir, Shaili Mathur, and Noah A. Rosenberg, Enumeration of rooted binary unlabeled galled trees, Bull. Math. Biol. 86 (2024), 45. (see Table 3)
- Lily Agranat-Tamir, Michael Fuchs, Bernhard Gittenberger, and Noah A. Rosenberg, Asymptotic enumeration of rooted binary unlabeled galled trees with a fixed number of galls. In C. Mailler, S. Wild, eds. Proceedings of the 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs) 302: 27. Schloss Dagstuhl — Leibniz-Zentrum für Informatik.
Formula
G.f. satisfies A(x,y) = x + y + (1/2)*A(x,y)^2 + (1/2)*A(x^2,y^2) - y/(1-A(x,y)) + y*A(x,y)/(2*(1-A(x,y))^2) + y*A(x,y)/(2*(1-A(x^2,y^2))) (eq. 56 of Agranat-Tamir et al., Bull. Math. Biol. 86 (2024), 45).
Comments