A380337 Number of perfect powers (in A001597) that do not exceed primorial A002110(n).
1, 1, 2, 7, 19, 63, 208, 802, 3344, 15576, 82368, 453834, 2743903, 17510668, 114616907, 785002449, 5711892439, 43861741799, 342522899289, 2803468693325, 23621594605383, 201819398349092, 1793794228847381, 16342173067958793, 154171432351500060, 1518411003599957803
Offset: 0
Keywords
Examples
Let P = A002110 and let s = A001597. a(0) = 1 since P(0) = 1, and the set s(1) = {1} contains k that do not exceed 1. a(1) = 1 since P(1) = 2, and the set s(1) = {1} contains k <= 2. a(2) = 2 since P(2) = 6, and the set s(1..2) = {1, 4} contains k <= 6. a(3) = 7 since P(3) = 30, and the set s(1..7) = {1, 4, 8, 9, 16, 25, 27} contains k <= 30. a(4) = 19 since P(4) = 210, and the set s(1..19) = {1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196} contains k <= 210, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..632
Programs
-
Mathematica
Map[1 - Sum[MoebiusMu[k]*Floor[#^(1/k) - 1], {k, 2, Floor[Log2[#]]}] &, FoldList[Times, 1, Prime[Range[30]]] ]
-
Python
from sympy import primorial, mobius, integer_nthroot def A380337(n): if n == 0: return 1 p = primorial(n) return int(1-sum(mobius(k)*(integer_nthroot(p,k)[0]-1) for k in range(2,p.bit_length()))) # Chai Wah Wu, Jan 23 2025
Comments