A380342 a(n) = phi(1 + phi(8 + phi(27 + ... phi(n^3)))).
1, 4, 12, 12, 36, 40, 36, 72, 156, 112, 48, 112, 110, 116, 72, 72, 36, 88, 72, 88, 116, 88, 88, 36, 48, 72, 88, 96, 88, 88, 88, 116, 116, 72, 36, 88, 116, 116, 36, 88, 116, 112, 48, 72, 112, 116, 116, 116, 116, 116, 88, 88, 72, 88, 116, 116, 88, 72, 88, 88, 88, 36, 116
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paolo Xausa)
- Luis Palacios Vela and Christian Wolird, The Forestry of Adversarial Totient Iterations, arXiv:2501.10616 [math.NT], 2025.
Programs
-
Mathematica
A380342[n_] := Fold[EulerPhi[#2 + #] &, 0, Range[n, 1, -1]^3]; Array[A380342, 100] (* Paolo Xausa, Jan 22 2025 *)
-
PARI
a(n) = my(x=0); forstep(k=n, 1, -1, x = eulerphi(x+k^3)); x;
-
Python
from functools import reduce from sympy import totient def A380342(n): return reduce(lambda x,y:totient(x)+y,(m**3 for m in range(n,-1,-1))) # Chai Wah Wu, Jan 22 2025
Comments