A380430 Number of powerful numbers k that are not powers of primes (i.e., k is in A286708) that do not exceed the primorial number A002110(n).
0, 0, 0, 0, 7, 50, 254, 1245, 5898, 29600, 163705, 925977, 5690175, 36681963, 241663896, 1662446097, 12134853382, 93406989325, 730785520398, 5990426525483, 50538885715526, 432266550168097, 3845700235189327, 35065304557027821, 334652745159828239, 3262707438761612651
Offset: 0
Examples
Let P = A002110 and let s = A286708 = A001694 \ A246547 \ {1}. a(0..3) = 0 since the smallest number in s is 36. a(4) = 7 since P(4) = 210 and numbers in s that are less than 210 include {36, 72, 100, 108, 144, 196, 200}, etc.
Programs
-
Mathematica
Table[-1 + Sum[If[MoebiusMu[j] != 0, Floor[Sqrt[#/j^3]], 0], {j, #^(1/3)}] - Sum[PrimePi@ Floor[#^(1/k)], {k, 2, Floor[Log2[#]]}] &[Product[Prime[i], {i, n}]], {n, 0, 12} ]
-
Python
from math import isqrt from sympy import primorial, primepi, integer_nthroot, mobius def A380430(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) if n == 0: return 0 m = primorial(n) c, l, j = int(squarefreepi(integer_nthroot(m, 3)[0])-sum(primepi(integer_nthroot(m,k)[0]) for k in range(2,m.bit_length()))-1), 0, isqrt(m) while j>1: k2 = integer_nthroot(m//j**2,3)[0]+1 w = squarefreepi(k2-1) c += j*(w-l) l, j = w, isqrt(m//k2**3) return c-l # Chai Wah Wu, Feb 25 2025