cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380441 Sum of the nonprimes dividing n and the number of distinct primes dividing n.

Original entry on oeis.org

1, 2, 2, 6, 2, 9, 2, 14, 11, 13, 2, 25, 2, 17, 18, 30, 2, 36, 2, 37, 24, 25, 2, 57, 27, 29, 38, 49, 2, 65, 2, 62, 36, 37, 38, 88, 2, 41, 42, 85, 2, 87, 2, 73, 72, 49, 2, 121, 51, 88, 54, 85, 2, 117, 58, 113, 60, 61, 2, 161, 2, 65, 96, 126, 68, 131, 2, 109, 72, 133, 2, 192, 2, 77, 118, 121, 80, 153, 2, 181, 119, 85, 2, 215, 88, 89, 90, 169, 2, 227, 94, 145, 96
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 21 2025

Keywords

Comments

Inverse Möbius transform of A005451(n).
For each divisor d of n, add 1 if d is prime, else add d.

Crossrefs

Cf. A000203 (sigma), A001221 (omega), A005171 (char nonprimes), A005451, A008472 (sopf), A023890.

Programs

  • Mathematica
    Table[DivisorSigma[1, n] - Sum[p, {p, Select[Divisors[n], PrimeQ]}] + PrimeNu[n], {n, 100}]

Formula

a(n) = sigma(n) - sopf(n) + omega(n).
a(n) = Sum_{d|n} d^c(d), where c = A005171.
a(n) = Sum_{d|n} A005451(d).
a(p^k) = 1 - p + (p^(k+1)-1)/(p-1) for p prime, k >= 1. - Wesley Ivan Hurt, Jul 02 2025
a(n) = A023890(n) + A001221(n). - Wesley Ivan Hurt, Aug 31 2025