cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380444 Sum of the nonprimes dividing n and the squares of the primes dividing n.

Original entry on oeis.org

1, 5, 10, 9, 26, 20, 50, 17, 19, 40, 122, 36, 170, 68, 50, 33, 290, 47, 362, 64, 80, 148, 530, 68, 51, 200, 46, 100, 842, 100, 962, 65, 164, 328, 110, 99, 1370, 404, 218, 112, 1682, 146, 1850, 196, 104, 580, 2210, 132, 99, 115, 350, 256, 2810, 128, 202, 164, 428, 904, 3482, 196, 3722, 1028, 152, 129, 260, 262, 4490, 400, 608, 208, 5042, 203, 5330, 1448, 150, 484
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 21 2025

Keywords

Comments

Inverse Möbius transform of A103164(n).

Examples

			a(12) = 1 + 2^2 + 3^2 + 4 + 6 + 12 = 36.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A005063, A008472 (sopf), A010051, A023890, A103164.

Programs

  • Mathematica
    Table[DivisorSigma[1, n] + Sum[p (p - 1), {p, Select[Divisors[n], PrimeQ]}], {n, 100}]

Formula

a(n) = sigma(n) - sopf(n) + sopf_2(n), where sopf_2(n) = Sum_{p|n, p prime} p^2.
a(n) = Sum_{d|n} d^tau(d^c(d)), where c = A010051.
a(n) = A023890(n) + A005063(n).
a(p^k) = (p^(k+1)+p^3-2*p^2+p-1)/(p-1) for p prime, k >= 1. - Wesley Ivan Hurt, Jul 02 2025