A380444 Sum of the nonprimes dividing n and the squares of the primes dividing n.
1, 5, 10, 9, 26, 20, 50, 17, 19, 40, 122, 36, 170, 68, 50, 33, 290, 47, 362, 64, 80, 148, 530, 68, 51, 200, 46, 100, 842, 100, 962, 65, 164, 328, 110, 99, 1370, 404, 218, 112, 1682, 146, 1850, 196, 104, 580, 2210, 132, 99, 115, 350, 256, 2810, 128, 202, 164, 428, 904, 3482, 196, 3722, 1028, 152, 129, 260, 262, 4490, 400, 608, 208, 5042, 203, 5330, 1448, 150, 484
Offset: 1
Examples
a(12) = 1 + 2^2 + 3^2 + 4 + 6 + 12 = 36.
Programs
-
Mathematica
Table[DivisorSigma[1, n] + Sum[p (p - 1), {p, Select[Divisors[n], PrimeQ]}], {n, 100}]
Formula
a(n) = sigma(n) - sopf(n) + sopf_2(n), where sopf_2(n) = Sum_{p|n, p prime} p^2.
a(n) = Sum_{d|n} d^tau(d^c(d)), where c = A010051.
a(p^k) = (p^(k+1)+p^3-2*p^2+p-1)/(p-1) for p prime, k >= 1. - Wesley Ivan Hurt, Jul 02 2025
Comments