A380452 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k) that are not also products of primorials, where omega = A001221.
324, 2916, 5832, 8100, 11664, 22500, 26244, 72900, 90000, 104976, 157464, 202500, 236196, 291600, 360000, 396900, 419904, 562500, 656100, 729000, 944784, 1102500, 1259712, 1440000, 1822500, 1889568, 2125764, 2160900, 2250000, 2624400, 3375000, 3572100, 3779136
Offset: 1
Keywords
Examples
Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading: Exponents n a(n) 2.3.5 ------------------------------- 1 324 = 18^2 2.4 2 2916 = 54^2 2.6 3 5832 = 18^3 3.6 4 8100 = 90^2 2.4.2 5 11664 = 108^2 4.6 6 22500 = 150^2 2.2.4 7 26244 = 162^2 2.8 8 72900 = 270^2 2.6.2 9 90000 = 300^2 4.2.4 10 104976 = 18^4 4.8 11 157464 = 54^3 3.9 12 202500 = 450^2 2.4.4
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Fast Mathematica algorithm for A055932.
Crossrefs
Programs
-
Mathematica
(* Load linked Mathematica algorithm, then: *) Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &]
Comments