cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380452 Perfect powers k^m, m > 1, omega(k) > 1, such that A053669(k) > A006530(k) that are not also products of primorials, where omega = A001221.

Original entry on oeis.org

324, 2916, 5832, 8100, 11664, 22500, 26244, 72900, 90000, 104976, 157464, 202500, 236196, 291600, 360000, 396900, 419904, 562500, 656100, 729000, 944784, 1102500, 1259712, 1440000, 1822500, 1889568, 2125764, 2160900, 2250000, 2624400, 3375000, 3572100, 3779136
Offset: 1

Views

Author

Michael De Vlieger, Jul 25 2025

Keywords

Comments

Perfect powers k^m, m > 1, for composite k in A056808.
Terms are even. For a(n) such that omega(a(n)) > 2, a(n) mod 10 = 0, where omega = A001221.

Examples

			Table of n, a(n) for select n, showing exponents m of prime power factors p^m | a(n) for primes p listed in the heading:
                      Exponents
 n      a(n)          2.3.5
-------------------------------
 1      324 =  18^2   2.4
 2     2916 =  54^2   2.6
 3     5832 =  18^3   3.6
 4     8100 =  90^2   2.4.2
 5    11664 = 108^2   4.6
 6    22500 = 150^2   2.2.4
 7    26244 = 162^2   2.8
 8    72900 = 270^2   2.6.2
 9    90000 = 300^2   4.2.4
10   104976 =  18^4   4.8
11   157464 =  54^3   3.9
12   202500 = 450^2   2.4.4
		

Crossrefs

Programs

  • Mathematica
    (* Load linked Mathematica algorithm, then: *)
    Select[Union@ Flatten[a055932[7][[3 ;; -1, 2 ;; -1]] ], And[Divisible[#1, Apply[Times, #2[[All, 1]] ]^2], GCD @@ #2[[All, -1]] > 1] & @@ {#, FactorInteger[#]} &]

Formula

Intersection of A131605 and A056808 = A380446 \ A368682.
Set difference A380446 \ A025487.