A380476 Numbers k with at least 4 prime factors such that A380459(k) is in A048103, i.e., has no divisors of the form p^p.
4686, 32406, 184866, 209166, 388086, 1099626, 1714866, 2111406, 2166846, 2356206, 3081606, 3303366, 6445806, 11366106, 21621606, 23022366, 39824466, 39826986, 42882846, 43197846, 46043826, 58216686, 61265886, 63603546, 66496506, 66611166, 87941706, 88968246, 92086746, 97117026, 101108706, 103367886, 118743306, 119658066
Offset: 1
Keywords
Examples
4686 = 2*3*11*71 and taking subproducts of three primes at time, we obtain 2*3*11 = 66, 2*3*71 = 426, 2*11*71 = 1562, 3*11*71 = 2343. Then A380459(4686) = A276086(66) * A276086(426) * A276086(1562) * A276086(2343) = 1622849599205985150 = 2^1 * 3^2 * 5^2 * 7^6 * 11^9 * 13^1, and because all the exponents are less than the corresponding primes, the product is in A048103. Considering the primorial base expansions of the same summands (subproducts), we obtain 2100 = A049345(66) 20100 = A049345(426) 73010 = A049345(1562) 101011 = A049345(2343) ------ 196221 = A049345(A003415(4686)), with the summands adding together cleanly without any carries. Note how the primorial base digits at the bottom are the exponents in the product A380459(4686) given above, read from the largest to the smallest prime factor
Comments