cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380500 Table T(n,k) = phi(phi(prime(n)^k)), n >= 1, k >= 0, read by upwards antidiagonals, where phi = A000010.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 8, 6, 4, 1, 4, 12, 40, 18, 8, 1, 4, 40, 84, 200, 54, 16, 1, 8, 48, 440, 588, 1000, 162, 32, 1, 6, 128, 624, 4840, 4116, 5000, 486, 64, 1, 10, 108, 2176, 8112, 53240, 28812, 25000, 1458, 128, 1, 12, 220, 2052, 36992, 105456, 585640, 201684, 125000, 4374, 256
Offset: 1

Views

Author

Michael De Vlieger, Feb 04 2025

Keywords

Comments

For n >= 2, k >= 1, T(n,k) is the number of primitive roots of prime(n)^k.

Examples

			Table begins as follows:
n\k  0   1     2      3       4        5          6           7
---------------------------------------------------------------
1:   1   1     1      2       4        8         16          32
2:   1   1     2      6      18       54        162         486
3:   1   2     8     40     200     1000       5000       25000
4:   1   2    12     84     588     4116      28812      201684
5:   1   4    40    440    4840    53240     585640     6442040
6:   1   4    48    624    8112   105456    1370928    17822064
7:   1   8   128   2176   36992   628864   10690688   181741696
		

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[EulerPhi[Prime[#]^k]] &[n - k + 1], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

T(n,k) = A010554(prime(n)^k) = A046144(prime(n)^k).
T(n,0) = 1.
T(n,1) = phi(prime(n)-1) = A008330(n).
T(n,2) = (prime(n)-1) * phi(prime(n)-1)
= (prime(n)-1)^2 * Product_{q|(prime(n)-1)} 1-1/q, prime q.
= A104039(n).
For k > 1, T(n,k) = prime(n)^(k-2) * A104039(n).
T(n,2) > prime(n) for n > 2.
T(n,k) < prime(n)^k for all n and for k > 0.