A380528 Smallest prime p such that p^p is a divisor of A380459(n), or 1 if no such factor exists, where A380459(n) = Product_{d|n} A276086(n/d)^A349394(d).
1, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 3, 2, 2, 1, 1, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 5, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 3, 2, 2, 2, 3, 2, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A129252(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(p)); if(pp > n, return(1))); }; A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A349394(n) = { my(p=0, e); if((e=isprimepower(n, &p)), p^(e-1), 0); }; A380459(n) = { my(m=1); fordiv(n, d, m *= A276086(d)^A349394(n/d)); (m); }; A380528(n) = A129252(A380459(n));