cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380554 G.f. A(x) satisfies A(x)^4 = A( A(x)^3 * x/(1-x) ).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 75, 163, 391, 991, 2498, 6150, 15016, 37116, 93482, 238154, 608074, 1551370, 3964200, 10176384, 26261500, 68034484, 176661828, 459534596, 1197777556, 3129475636, 8195867902, 21508247446, 56540427826, 148863643466, 392539322259, 1036662269875, 2741706892035
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2025

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 6*x^6 + 16*x^7 + 36*x^8 + 75*x^9 + 163*x^10 + 391*x^11 + 991*x^12 + 2498*x^13 + 6150*x^14 + 15016*x^15 + ...
where A(x)^4 = A( A(x)^3 * x/(1-x) );
also, A(x) = x*(1 + A(x) + A(x)^4 + A(x)^16 + A(x)^64 + ...).
RELATED SERIES.
x/(1 + x + x^4 + x^16 + x^64 + ...) = x - x^2 + x^3 - x^4 + x^6 - 2*x^7 + 3*x^8 - 3*x^9 + 2*x^10 - 3*x^12 + 6*x^13 - 8*x^14 + 8*x^15 - 5*x^16 + ...
where x = A( x/(1 + x + x^4 + x^16 + x^64 + ...) ).
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 18*x^7 + 42*x^8 + 112*x^9 + 288*x^10 + ...
A(x)^4 = x^4 + 4*x^5 + 10*x^6 + 20*x^7 + 39*x^8 + 88*x^9 + 228*x^10 + 600*x^11 + ...
SPECIFIC VALUES.
A(t) = 7/10 at t = 0.36018915820185609929548309671397017657231396...
  where (7/10)^4 = A( (7/10)^3*t/(1-t) )
  and t = (7/10)/(1 + Sum_{n>=0} (7/10)^(4^n)).
A(t) = 2/3 at t = 0.357324077294579321123715825007257976292387856...
  where 16/81 = A( (8/27)*t/(1-t) )
  and t = (2/3)/(1 + Sum_{n>=0} (2/3)^(4^n)).
A(t) = 1/2 at t = 0.319996875030517280093584464262123092506355813...
  where 1/16 = A( (1/8)*t/(1-t) )
  and t = (1/2)/(1 + Sum_{n>=0} (1/2)^(4^n)).
A(t) = 1/3 at t = 0.247706417742171319902767393551872977585317906...
  where 1/81 = A( (1/27)*t/(1-t) )
  and t = (1/3)/(1 + Sum_{n>=0} (1/3)^(4^n)).
A(1/3) = 0.54373202136840396341881074287828877295481851718413...
  where A(1/3)^4 = A( A(1/3)^3*(1/2) ).
A(1/4) = 0.33766677567921691723942758840979376280294197783058...
  where A(1/4)^4 = A( A(1/4)^3*(1/3) ).
A(1/5) = 0.25099215755350299738032710744403195608988446686839...
A(1/6) = 0.20032206620931060989695576481191496886558371212657...
		

Crossrefs

Programs

  • PARI
    /* A(x) = Series_Reversion( x/(1 + Sum_{n>=0} x^(4^n)) ) */
    {a(n) = my(A = serreverse( x/(1 + sum(m=0,ceil(log(n+1)/log(4)), x^(4^m) +x*O(x^n))) )); polcoef(A,n)}
    for(n=1, 40, print1(a(n), ", "))
    
  • PARI
    /* A(x)^4 = A( A(x)^3 * x/(1-x) ) */
    {a(n) = my(A=[1], Ax);
    for(i=1, n, A=concat(A, 0); Ax=x*Ser(A);
    A[#A] = -polcoeff( Ax^4 - subst(Ax, x, Ax^3*x/(1-x) ), #A+3) ); A[n]}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = Series_Reversion( x/(1 + Sum_{n>=0} x^(4^n)) ).
(2) A(x) = x * (1 + Sum_{n>=0} A(x)^(4^n)).
(3) A(x) = x/(1-x) * (1 + Sum_{n>=1} A(x)^(4^n)).
(4) A(x)^4 = A( A(x)^3 * x/(1-x) ).
(5) A(x)^16 = A( A(x)^15 * x/(1 - x - x*A(x)^3) ).
(6) A(x)^64 = A( A(x)^63 * x/(1 - x - x*A(x)^3 - x*A(x)^15) ).
(7) A(x)^(4^n) = A( A(x)^(4^n-1) * x/(1 - x*Sum_{k=0..n-1} A(x)^(4^k-1)) ) for n >= 1.
The radius of convergence r and A(r) satisfy r = 1/(Sum_{n>=0} 4^n*A(r)^(4^n-1)) and A(r) = A( A(r)^3*r/(1-r) )^(1/4), where r = 0.3613437470225014946622689597447779556234350427479140... and A(r) = 0.7371720020640001613320630406857895231048184830453856...