cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380557 G.f. satisfies A(x) such that: -1 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.

Original entry on oeis.org

1, 1, 2, 10, 35, 146, 589, 2521, 10880, 48130, 215490, 978131, 4483493, 20740309, 96667511, 453596099, 2140879339, 10157274086, 48414142443, 231726319442, 1113290775079, 5366873616498, 25952658569610, 125856499026093, 611930422986515, 2982444057333882, 14568259180879990, 71307949455547118
Offset: 0

Views

Author

Paul D. Hanna, Feb 03 2025

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1).
Note that formulas (5) and (6) are identities, and hold true for all A(x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 35*x^4 + 146*x^5 + 589*x^6 + 2521*x^7 + 10880*x^8 + 48130*x^9 + 215490*x^10 + ...
SPECIFIC VALUES.
A(t) = 15/8 at t = 0.19344501240894726710748422307503613491843235983978...
  where -1 = Sum_{n=-oo..+oo} (-1)^n * t^(2*n+1) * (1 + t^n)^(n+1) * (15/8)^n.
A(t) = 13/7 at t = 0.19341948378562934846535490742010025888491204467175...
A(t) = 11/6 at t = 0.19333502076470314454576717568898264806286912451280...
A(t) = 9/5 at t = 0.193110973645115287451084966528093291445869685605026...
A(t) = 7/4 at t = 0.192511645242345015361112270688385360547743653185979...
A(t) = 5/3 at t = 0.190649553303712199475798636706794101316873079578727...
A(t) = 3/2 at t = 0.182089586086018008207410926078691444238166561231377...
A(t) = 4/3 at t = 0.161675866655112310035152981730415472582224089685922...
A(t) = 5/4 at t = 0.143001255997678107192529149738503806026990657450325...
A(t) = 6/5 at t = 0.127286533527611786785145642678412658294861536180040...
A(t) = 7/6 at t = 0.114247661034580905508079370420172649525885310579285...
A(1/6) = 1.3631240552377275579566206545056633589020532732074...
  where -1 = Sum_{n=-oo..+oo} (-1)^n * (1/6)^(2*n+1) * (1 + (1/6)^n)^(n+1) * A(1/6)^n.
A(1/7) = 1.2494768685846922246570903862376666502561254090745...
A(1/8) = 1.1937090558071312140144246419584402049019509862828...
A(1/9) = 1.1594652229281839152092617957390758203214375656645...
A(1/10) = 1.135997746902180909378823046338236460433675615420...
		

Crossrefs

Cf. A356783.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0);
    A[#A] = polcoeff(1 + sum(m=-#A, #A, (-1)^m * x^(2*m+1) * (1 + x^m +x*O(x^#A))^(m+1) * Ser(A)^m  ), #A-2); ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations.
(1) -1 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n)^(n+1) * A(x)^n.
(2) A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (A(x) + x^n)^(n+1) / A(x)^n.
(3) -1 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-3)+1) / ( (1 + x^n)^(n-1) * A(x)^n ).
(4) A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-3)+1) * A(x)^n / (1 + x^n*A(x))^(n-1).
(5) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n+1) * (1 + x^n*A(x))^(n+1) / A(x)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-3)+1) * A(x)^n / (A(x) + x^n)^(n-1).