cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380574 For an integer k with prime factorization p_1*p_2*p_3* ... *p_m let k* = (p_1+1)*(p_2+1)*(p_3+1)* ... *(p_m+1); sequence gives k* such that k* is divisible by k.

Original entry on oeis.org

1, 12, 36, 144, 432, 1296, 1728, 5184, 15552, 20736, 46656, 62208, 186624, 248832, 559872, 746496, 1679616, 2239488, 2985984, 6718464, 8957952, 20155392, 26873856, 35831808, 60466176, 80621568, 107495424, 241864704, 322486272, 429981696, 725594112, 967458816
Offset: 1

Views

Author

Chai Wah Wu, Mar 26 2025

Keywords

Comments

Terms of A064518 in increasing order.
Numbers of the form 3^i*4^j with j <= i <= 2j.
Subsequence of A064476.

Crossrefs

Programs

  • Mathematica
    With[{max = 10^9}, Select[Flatten[Table[3^i*4^j, {j, 0, Log[12, max]}, {i, j, 2*j}]] // Sort, # <= max &]] (* Amiram Eldar, Mar 29 2025 *)
  • Python
    from sympy import integer_log
    def A380574(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(max(0,min((j:=i<<1),integer_log(x>>j,3)[0])-i+1) for i in range(x.bit_length()+1>>1))
        return bisection(f,n,n)

Formula

Sum_{n>=1} 1/a(n) = 432/385. - Amiram Eldar, Mar 29 2025