A380574 For an integer k with prime factorization p_1*p_2*p_3* ... *p_m let k* = (p_1+1)*(p_2+1)*(p_3+1)* ... *(p_m+1); sequence gives k* such that k* is divisible by k.
1, 12, 36, 144, 432, 1296, 1728, 5184, 15552, 20736, 46656, 62208, 186624, 248832, 559872, 746496, 1679616, 2239488, 2985984, 6718464, 8957952, 20155392, 26873856, 35831808, 60466176, 80621568, 107495424, 241864704, 322486272, 429981696, 725594112, 967458816
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{max = 10^9}, Select[Flatten[Table[3^i*4^j, {j, 0, Log[12, max]}, {i, j, 2*j}]] // Sort, # <= max &]] (* Amiram Eldar, Mar 29 2025 *)
-
Python
from sympy import integer_log def A380574(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(max(0,min((j:=i<<1),integer_log(x>>j,3)[0])-i+1) for i in range(x.bit_length()+1>>1)) return bisection(f,n,n)
Formula
Sum_{n>=1} 1/a(n) = 432/385. - Amiram Eldar, Mar 29 2025
Comments