cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380600 Irregular table T(n, k), n > 0, k = 1..A000005(n) read by rows: the n-th row lists the numbers of the form n * (d-1) / d with d a positive divisor of n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 2, 3, 0, 4, 0, 3, 4, 5, 0, 6, 0, 4, 6, 7, 0, 6, 8, 0, 5, 8, 9, 0, 10, 0, 6, 8, 9, 10, 11, 0, 12, 0, 7, 12, 13, 0, 10, 12, 14, 0, 8, 12, 14, 15, 0, 16, 0, 9, 12, 15, 16, 17, 0, 18, 0, 10, 15, 16, 18, 19, 0, 14, 18, 20, 0, 11, 20, 21, 0, 22
Offset: 1

Views

Author

Rémy Sigrist, Feb 02 2025

Keywords

Examples

			Table T(n, k) begins:
  n   n-th row
  --  ------------------
   1  0
   2  0, 1
   3  0, 2
   4  0, 2, 3
   5  0, 4
   6  0, 3, 4, 5
   7  0, 6
   8  0, 4, 6, 7
   9  0, 6, 8
  10  0, 5, 8, 9
  11  0, 10
  12  0, 6, 8, 9, 10, 11
  13  0, 12
  14  0, 7, 12, 13
		

Crossrefs

Programs

  • Mathematica
    Table[Map[n*(# - 1)/# &, Divisors[n]], {n, 23}] // Flatten (* Michael De Vlieger, Feb 03 2025 *)
  • PARI
    row(n) = apply (d -> n*(d-1)/d, divisors(n))

Formula

T(n, k) = n * (A027750(n, k) - 1) / A027750(n, k).
Sum_{k = 1..A000005(n)} T(n, k) = A094471(n).
Product_{k = 2..A000005(n)} T(n, k) = A072513(n).
LCM{k = 2..A000005(n)} T(n, k) = A258324(n).
T(n, 1) = 0.
T(n, 2) = A060681(n) for any n > 1. - Michel Marcus, Feb 03 2025
T(n, A000005(n)-1) = A046666(n) for any n > 1.
T(n, A000005(n)) = n-1.