cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380611 Irregular triangle read by rows: T(r,c) is the product of the number of standard Young tableaux (A117506) and the number of semistandard Young tableaux (A262030) for partitions of r.

Original entry on oeis.org

1, 1, 3, 1, 10, 16, 1, 35, 135, 40, 45, 1, 126, 896, 875, 756, 375, 96, 1, 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1, 1716, 28512, 90552, 74250, 65856, 257250, 48000, 74088, 55566, 102900, 8100, 10976, 5488, 288, 1, 6435, 147147, 686400, 567567, 931392, 3244032, 606375, 194040, 2910600, 1448832, 2673000, 202125, 666792, 846720, 1029000, 491520, 19845, 24696, 65856, 14400, 441, 1
Offset: 0

Views

Author

Wouter Meeussen, Jan 28 2025

Keywords

Comments

Partitions are generated in reverse lexicographic order.
Remark that A262030 uses Abramowitz-Stegun (A-St) order.
Sum of row r equals r^r for r > 0 (Robinson-Schensted correspondence).

Examples

			Triangle begins:
    1;
    1;
    3,    1;
   10,   16,     1;
   35,  135,    40,   45,    1;
  126,  896,   875,  756,  375,    96,    1;
  462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1;
  ...
Fourth row is 1*35, 3*45, 2*20, 3*15, 1*1 with sum 256 = 4^4.
		

Crossrefs

Row sums give A000312.
Row lengths give A000041.
Leftmost column gives A088218.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    hooklength[par_?PartitionQ]:=Table[Count[par,q_/;q>=j]+1-i+par[[i]]-j,{i,Length[par]},{j,par[[i]]}];
    countSYT[par_?PartitionQ]:=Tr[par]!/Times@@Flatten[hooklength[par]];
    content[par_?PartitionQ]:=Table[j-i,{i,Length[par]},{j,par[[i]]}];
    countSSYT[par_?PartitionQ,t_Integer_]:=Times@@((t+Flatten[content[par]])/Flatten[hooklength[par]]);
    Table[countSYT[par] countSSYT[par,n],{n,8},{par,IntegerPartitions[n]}]