A380611 Irregular triangle read by rows: T(r,c) is the product of the number of standard Young tableaux (A117506) and the number of semistandard Young tableaux (A262030) for partitions of r.
1, 1, 3, 1, 10, 16, 1, 35, 135, 40, 45, 1, 126, 896, 875, 756, 375, 96, 1, 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1, 1716, 28512, 90552, 74250, 65856, 257250, 48000, 74088, 55566, 102900, 8100, 10976, 5488, 288, 1, 6435, 147147, 686400, 567567, 931392, 3244032, 606375, 194040, 2910600, 1448832, 2673000, 202125, 666792, 846720, 1029000, 491520, 19845, 24696, 65856, 14400, 441, 1
Offset: 0
Examples
Triangle begins: 1; 1; 3, 1; 10, 16, 1; 35, 135, 40, 45, 1; 126, 896, 875, 756, 375, 96, 1; 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1; ... Fourth row is 1*35, 3*45, 2*20, 3*15, 1*1 with sum 256 = 4^4.
Links
- Wikipedia, Young tableau
Crossrefs
Programs
-
Mathematica
Needs["Combinatorica`"]; hooklength[par_?PartitionQ]:=Table[Count[par,q_/;q>=j]+1-i+par[[i]]-j,{i,Length[par]},{j,par[[i]]}]; countSYT[par_?PartitionQ]:=Tr[par]!/Times@@Flatten[hooklength[par]]; content[par_?PartitionQ]:=Table[j-i,{i,Length[par]},{j,par[[i]]}]; countSSYT[par_?PartitionQ,t_Integer_]:=Times@@((t+Flatten[content[par]])/Flatten[hooklength[par]]); Table[countSYT[par] countSSYT[par,n],{n,8},{par,IntegerPartitions[n]}]
Comments