cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380616 Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 8, 5, 2, 17, 33, 30, 13, 3, 79, 198, 208, 118, 35, 6, 554, 1571, 1894, 1232, 472, 104, 12, 5283, 16431, 21440, 15545, 6879, 1914, 315, 27, 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65, 966156, 3288821, 4799336, 4019360, 2163112, 787065, 196267, 32857, 3407, 175
Offset: 0

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of unsensed combinatorial maps with n edges and k faces.

Examples

			Triangle begins:
n\k |     1       2       3       4       5      6     7     8   9
----+--------------------------------------------------------------
  0 |     1;
  1 |     1,      1;
  2 |     2,      2,      1;
  3 |     5,      8,      5,      2;
  4 |    17,     33,     30,     13,      3;
  5 |    79,    198,    208,    118,     35,     6;
  6 |   554,   1571,   1894,   1232,    472,   104,   12;
  7 |  5283,  16431,  21440,  15545,   6879,  1914,  315,   27;
  8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
  ...
		

Crossrefs

Row sums are A214816.
Main diagonal is A006082(n+1).
Columns 1..3 are A054499, A380620, A380621.
Cf. A053979 (rooted), A277741 (planar), A380615 (sensed), A380617 (achiral).

Formula

T(n,k) = (A380615(n,k) + A380617(n,k))/2.

A380619 Number of sensed combinatorial maps with n edges and 3 vertices.

Original entry on oeis.org

1, 5, 34, 288, 3102, 39242, 573654, 9484003, 175036065, 3568736050, 79697415569, 1935425955944, 50794210191337, 1432898704970561, 43244525933606928, 1390448844972918928, 47455314531812444788, 1713525997666221196906, 65266335503957271588042, 2615307907226341637828915
Offset: 2

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of sensed combinatorial maps with n edges and 3 faces.

Crossrefs

Column 3 of A380615.
Cf. A380618 (2 vertices), A380621 (unsensed).

Programs

  • PARI
    \\ Needs G(), InvEulerMTS from A380615.
    seq(n, k=3)={my(y='y); Vec(polcoef(InvEulerMTS(G(n, y*(1 + O(y^k)))), k, y))}

A380620 Number of unsensed combinatorial maps with n edges and 2 vertices.

Original entry on oeis.org

1, 2, 8, 33, 198, 1571, 16431, 213831, 3288821
Offset: 1

Views

Author

Andrew Howroyd, Jan 28 2025

Keywords

Comments

By duality, also the number of unsensed combinatorial maps with n edges and 2 faces.

Crossrefs

Column 2 of A380616.
Cf. A380239 (planar), A380618 (sensed), A380621 (3 vertices).
Showing 1-3 of 3 results.