cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380622 Array read by antidiagonals: T(n,k) is the number of rooted k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 3, 5, 1, 0, 1, 0, 24, 0, 1, 0, 1, 15, 189, 297, 60, 1, 0, 1, 0, 1695, 0, 4896, 0, 1, 0, 1, 105, 19305, 472200, 869400, 100278, 1105, 1, 0, 1, 0, 252000, 0, 242183775, 0, 2450304, 0, 1, 0, 1, 945, 3828825, 2465608950, 103694490900, 198147676875, 16482741030, 69533397, 27120, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
============================================================
n\k | 1 2    3       4      5         6     7          8 ...
----+-------------------------------------------------------
  0 | 1 1    1       1      1         1     1          1 ...
  1 | 0 1    0       3      0        15     0        105 ...
  2 | 1 1    5      24    189      1695 19305     252000 ...
  3 | 0 1    0     297      0    472200     0 2465608950 ...
  4 | 0 1   60    4896 869400 242183775 ...
  5 | 0 1    0  100278      0 ...
  6 | 0 1 1105 2450304 ...
  7 | 0 1    0 ...
  ...
		

Crossrefs

Columns 2..6 are A000012, A062980 (with interspersed zeros), A292186, A380623 (with interspersed zeros), A380624.

Programs

  • PARI
    T(n,k)={my(A=O(x^(n*k+1)), g=serlaplace(serconvol(exp(x^k/k + A), exp(x^2/2 + A)))); polcoef(1 + x*deriv(g)/g, n*k)}

Formula

A380625(n) = Sum_{d|2*n} T(d,2*n/d).