A380622 Array read by antidiagonals: T(n,k) is the number of rooted k-regular combinatorial maps with n vertices, n >= 0, k >= 1.
1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 3, 5, 1, 0, 1, 0, 24, 0, 1, 0, 1, 15, 189, 297, 60, 1, 0, 1, 0, 1695, 0, 4896, 0, 1, 0, 1, 105, 19305, 472200, 869400, 100278, 1105, 1, 0, 1, 0, 252000, 0, 242183775, 0, 2450304, 0, 1, 0, 1, 945, 3828825, 2465608950, 103694490900, 198147676875, 16482741030, 69533397, 27120, 1, 0
Offset: 0
Examples
Array begins: ============================================================ n\k | 1 2 3 4 5 6 7 8 ... ----+------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 0 1 0 3 0 15 0 105 ... 2 | 1 1 5 24 189 1695 19305 252000 ... 3 | 0 1 0 297 0 472200 0 2465608950 ... 4 | 0 1 60 4896 869400 242183775 ... 5 | 0 1 0 100278 0 ... 6 | 0 1 1105 2450304 ... 7 | 0 1 0 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Crossrefs
Programs
-
PARI
T(n,k)={my(A=O(x^(n*k+1)), g=serlaplace(serconvol(exp(x^k/k + A), exp(x^2/2 + A)))); polcoef(1 + x*deriv(g)/g, n*k)}
Formula
A380625(n) = Sum_{d|2*n} T(d,2*n/d).
Comments