cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380626 Array read by antidiagonals: T(n,k) is the number of sensed k-regular combinatorial maps with n vertices, n >= 0, k >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 3, 1, 0, 1, 0, 7, 0, 1, 0, 1, 5, 29, 36, 11, 1, 0, 1, 0, 174, 0, 365, 0, 1, 0, 1, 18, 1475, 26614, 44106, 5250, 81, 1, 0, 1, 0, 16162, 0, 10107019, 0, 103801, 0, 1, 0, 1, 105, 214215, 102762168, 3703659517, 6605320523, 549530780, 2492164, 1228, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Jan 29 2025

Keywords

Comments

The combinatorial maps considered are connected, unrooted, unlabeled, may have loops and parallel edges and are of any orientable genus.

Examples

			Array begins:
==================================================================
n\k | 1 2  3       4         5          6          7         8 ...
----+-------------------------------------------------------------
  0 | 1 1  1       1         1          1          1         1 ...
  1 | 0 1  0       2         0          5          0        18 ...
  2 | 1 1  3       7        29        174       1475     16162 ...
  3 | 0 1  0      36         0      26614          0 102762168 ...
  4 | 0 1 11     365     44106   10107019 3703659517 ...
  5 | 0 1  0    5250         0 6605320523 ...
  6 | 0 1 81  103801 549530780 ...
  7 | 0 1  0 2492164 ...
   ...
		

Crossrefs

Columns 2..6 (odd columns with interspersed zeros) are A000012, A129114, A292206, A380627, A380628.
Row n=1 is A007769 (with interspersed zeros).
Cf. A170946, A380622 (rooted), A380629.

Programs

  • PARI
    InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))}
    D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)}
    G(n,m)={my(t=m*n); prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) )}
    T(n,k)=if(n==0, 1, InvEulerT(Vec(-1 + G(n,k), -n))[n])

Formula

A380629(n) = Sum_{d|2*n} T(d,2*n/d).