A380626 Array read by antidiagonals: T(n,k) is the number of sensed k-regular combinatorial maps with n vertices, n >= 0, k >= 1.
1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 3, 1, 0, 1, 0, 7, 0, 1, 0, 1, 5, 29, 36, 11, 1, 0, 1, 0, 174, 0, 365, 0, 1, 0, 1, 18, 1475, 26614, 44106, 5250, 81, 1, 0, 1, 0, 16162, 0, 10107019, 0, 103801, 0, 1, 0, 1, 105, 214215, 102762168, 3703659517, 6605320523, 549530780, 2492164, 1228, 1, 0
Offset: 0
Examples
Array begins: ================================================================== n\k | 1 2 3 4 5 6 7 8 ... ----+------------------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 ... 1 | 0 1 0 2 0 5 0 18 ... 2 | 1 1 3 7 29 174 1475 16162 ... 3 | 0 1 0 36 0 26614 0 102762168 ... 4 | 0 1 11 365 44106 10107019 3703659517 ... 5 | 0 1 0 5250 0 6605320523 ... 6 | 0 1 81 103801 549530780 ... 7 | 0 1 0 2492164 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
Crossrefs
Programs
-
PARI
InvEulerT(v)={dirdiv(Vec(log(1+x*Ser(v)),-#v), vector(#v,n,1/n))} D(m,k)={my(g=gcd(m,k)); sumdiv(g, d, my(j=m/d); x^j*eulerphi(d)*k^(j-1)/j)} G(n,m)={my(t=m*n); prod(k=1, t, my(A=O(x^(t\k+1)), p=serconvol(exp(A + D(m,k)), exp(A + D(2,k)))); sum(r=0, t\k, if(k*r%m==0, r!*polcoef(p,r)/(k^r)*x^(k*r/m)), O(x*x^n)) )} T(n,k)=if(n==0, 1, InvEulerT(Vec(-1 + G(n,k), -n))[n])
Formula
A380629(n) = Sum_{d|2*n} T(d,2*n/d).
Comments