A380649 Rectangular array ((-1)*D(i,j,1,2)) read by descending antidiagonals: D(i,j,s,n) denotes the determinant of the matrix described in Comments.
1, 4, 3, 8, 7, 6, 13, 12, 11, 10, 19, 18, 17, 16, 15, 26, 25, 24, 23, 22, 21, 34, 33, 32, 31, 30, 29, 28, 43, 42, 41, 40, 39, 38, 37, 36, 53, 52, 51, 50, 49, 48, 47, 46, 45, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66
Offset: 1
Examples
Corner of (-1)*D(i,j,1,2): 1 4 8 13 19 26 34 43 53 64 76 89 3 7 12 18 25 33 42 52 63 75 88 102 6 11 17 24 32 41 51 62 74 87 101 116 10 16 23 31 40 50 61 73 86 100 115 131 15 22 30 39 49 60 72 85 99 114 130 147 21 29 38 48 59 71 84 98 113 129 146 164 28 37 47 58 70 83 97 112 128 145 163 182 36 46 57 69 82 96 111 127 144 162 181 201 45 56 68 81 95 110 126 143 161 180 200 221 55 67 80 94 109 125 142 160 179 199 220 242 66 79 93 108 124 141 159 178 198 219 241 264 78 92 107 123 140 158 177 197 218 240 263 287 m(1,1) = 1, so M(1,1,1,2) is the matrix having (row 1) = (1,2) and (row 2) = (3,5), so (-1)*D(1,1,1,2) = -(1*5-2*3) = 1.
Programs
-
Mathematica
s = 1; n = 2; z = 12; r[n_, k_] := n + (n + k - 2)*(n + k - 1)/2; Grid[Table[r[n, k], {n, 1, z}, {k, 1, z}]] (* Array A000027 *) FindLinearRecurrence[Table[r[1, k], {k, 1, 20}]] t[i_, j_] := Table[r[i, j + k*s], {k, 0, n - 1}]; d[i_, j_] := -Det[Table[t[i + k*s, j], {k, 0, n - 1}]]; (* (-1)*D(i,j,s,n) *) Grid[Table[d[i, j], {i, 1, z}, {j, 1, z}]] (* array *) FindLinearRecurrence[Table[d[12, k], {k, 1, 20}]] Table[d[k, m - k], {m, 2, z}, {k, 1, m - 1}] // Flatten (* sequence *)
Comments