cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A380778 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x / (1 + x)^2) / (1 + x)^2 ).

Original entry on oeis.org

1, 3, 21, 238, 3777, 77616, 1966381, 59379888, 2085295617, 83580555520, 3767468068581, 188731359078912, 10405256927541889, 626236791181897728, 40860738460515664125, 2873352871221375440896, 216652727562188159522049, 17437704874236857627246592, 1492289181734461545084103477
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=1, r=1, s=1, t=-2, u=2) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp( x * A(x) / (1 + x*A(x))^2 ) * (1 + x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(2*n-2*k+2,n-k)/k!.

A380675 Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^2 * exp(-x * (1 - x)) ).

Original entry on oeis.org

1, 3, 27, 436, 10377, 329016, 13079971, 626414496, 35132554449, 2259697340800, 164013549475371, 13263204195136512, 1182645846100592473, 115285805003164594176, 12197859187688440506675, 1392237638583170475298816, 170517388925776876433310369, 22307473046095249063001554944
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+1)^(k-1)*binomial(3*n-2*k+1, n-k)/k!);

Formula

E.g.f. A(x) satisfies A(x) = exp(x * A(x) * (1 - x*A(x)))/(1 - x*A(x))^2.
a(n) = n! * Sum_{k=0..n} (n+1)^(k-1) * binomial(3*n-2*k+1,n-k)/k!.

A380720 E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2 * (1 - x*A(x))^4) / (1 - x*A(x))^2.

Original entry on oeis.org

1, 3, 27, 427, 9829, 299421, 11399767, 522120299, 27993612745, 1721382881401, 119487832998811, 9244561661068647, 788985451618181869, 73644131873399817653, 7463589265871298367711, 816231439143125763495811, 95811879190166378655829393, 12015708296507465444922873585
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+k+1)^(k-1)*binomial(3*n-3*k+1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n+k+1)^(k-1) * binomial(3*n-3*k+1,n-k)/k!.
Showing 1-3 of 3 results.