A380676 G.f. A(x) satisfies 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^n)^(3*n+1).
1, 2, 9, 76, 591, 5127, 46919, 444617, 4333010, 43132310, 436715297, 4483520704, 46564078707, 488335074439, 5164287656762, 55010054836724, 589682412920880, 6356441723399838, 68858811108713642, 749250723117079260, 8185098919015604558, 89739660783143322586, 987110817010576637569
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 9*x^2 + 76*x^3 + 591*x^4 + 5127*x^5 + 46919*x^6 + 444617*x^7 + 4333010*x^8 + 43132310*x^9 + 436715297*x^10 + ... SPECIFIC VALUES. A(t) = 3/2 at t = 0.084454810721317538501174440773777047952092460562060... where 2 = Sum_{n=-oo..+oo} (-t)^n * (3/2 + t^n)^(3*n+1). A(t) = 4/3 at t = 0.077952215522932621280995556726745992779521168178442... A(t) = 5/4 at t = 0.069865542488187377549700484712724108090103217291400... A(t) = 6/5 at t = 0.062525019563729453209334340397151869258204650105887... A(1/12) = 1.4451475449531942766582635648883506035661276873944... where 2 = Sum_{n=-oo..+oo} (-1/12)^n * (A(1/12) + (1/12)^n)^(3*n+1). A(1/13) = 1.3197666375699291221191258833369709715040515804644... A(1/14) = 1.2629677124586701325494126247872966004241466655536... A(1/15) = 1.2263276036037963341062042248250428743844880153971... A(1/16) = 1.1998529038743458677434930677034050910039899372219...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..350
Programs
-
PARI
{a(n) = my(V=[1]); for(i=1, n, V = concat(V, 0); A = Ser(V); V[#V] = polcoef(2 - sum(n=-#V, #V, (-1)^n * x^n * (A + x^n)^(3*n+1) ), #V-1) ); H=A; V[n+1]} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) + x^n)^(3*n+1).
(2) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(3*n-2)) / (1 + x^n*A(x))^(3*n-1).