A380678 G.f. A(x) satisfies A( x - A(x)^2/(1 - A(x)^2) ) = x.
1, 1, 4, 25, 190, 1645, 15652, 160186, 1739032, 19838179, 236192158, 2920269202, 37352521348, 492799406899, 6690428699026, 93293086422514, 1334088426585850, 19538994465481000, 292775222237716612, 4484180296611470218, 70146488080451823382, 1119964903188050808163, 18239593214541431577550
Offset: 1
Keywords
Examples
G.f.: A(x) = x + x^2 + 4*x^3 + 25*x^4 + 190*x^5 + 1645*x^6 + 15652*x^7 + 160186*x^8 + 1739032*x^9 + 19838179*x^10 + ... where A(x - A(x)^2/(1 - A(x)^2)) = x. Let B(x) = x - Series_Reversion(A(x)), where B(x) = x^2 + 2*x^3 + 10*x^4 + 62*x^5 + 469*x^6 + 4028*x^7 + 37984*x^8 + 385202*x^9 + 4144798*x^10 + ... + A380558(n)*x^n + ... then A(x) = x + B(A(x)) and B(x - B(x)) = x^2/(1 - x^2).
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..520
Programs
-
PARI
/* Generates N terms of this sequence */ N = 40; A=x; for(m=1,N, A=truncate(A); A = serreverse(x - A^2/(1 - A^2 +O(x^m)) ); ); Vec(A)
Formula
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( x - A(x)^2/(1 - A(x)^2) ) = x.
(2) A(x) = x + A(A(x))^2/(1 - A(A(x))^2).
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) A(x)^(2*n)/(1 - A(x)^2)^n / n!.
(4) A(x) = x + B(A(x)) and A(x - B(x)) = x where B(x) = A(x)^2/(1 - A(x)^2) is the g.f. of A380558.
Comments