cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380708 G.f. A(x) satisfies A(x) = 1 + x*abs( 1/A(x) )^2.

Original entry on oeis.org

1, 1, 2, 3, 2, 7, 16, 32, 26, 119, 314, 687, 600, 2940, 8104, 18404, 16618, 84447, 238454, 553121, 509362, 2645367, 7582080, 17828384, 16631704, 87642628, 253770136, 602394756, 567132656, 3019835984, 8808836984, 21056808924, 19960043146, 107115901135, 314214037774, 755139832949, 719601214982
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2025

Keywords

Comments

Conjecture: for n > 0, a(n) is odd iff n = 2*A003714(k) + 1 for k >= 0, where A003714 are the fibbinary numbers.
The values of a(n)/a(n-1) tend to a period-4 sequence of reals near [0.99304..., 5.66753..., 3.05528..., 2.50250...] (the values at n = 5000..5003).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 2*x^4 + 7*x^5 + 16*x^6 + 32*x^7 + 26*x^8 + 119*x^9 + 314*x^10 + 687*x^11 + 600*x^12 + 2940*x^13 + 8104*x^14 + 18404*x^15 + ...
RELATED SERIES.
1/A(x) = 1 - x - x^2 + 3*x^4 - 5*x^5 - 8*x^6 + 47*x^8 - 95*x^9 - 165*x^10 + 1132*x^12 - 2400*x^13 - 4324*x^14 + 32079*x^16 + ...
in which the coefficients of x^(4*n+3) are zero for n >= 0.
The absolute value of the series 1/A(x) begins
abs(1/A(x)) = 1 + x + x^2 + 3*x^4 + 5*x^5 + 8*x^6 + 47*x^8 + 95*x^9 + 165*x^10 + 1132*x^12 + 2400*x^13 + 4324*x^14 + 32079*x^16 + 69823*x^17 + 128363*x^18 + 996675*x^20 + 2204161*x^21 + 4104512*x^22 + ...
the square of which starts as
abs(1/A(x))^2 = 1 + 2*x + 3*x^2 + 2*x^3 + 7*x^4 + 16*x^5 + 32*x^6 + 26*x^7 + 119*x^8 + 314*x^9 + ...
where A(x) = 1 + x*abs(1/A(x))^2.
Compare the series A(x) to the series expansion of x/A(x)^2:
x/A(x)^2 = x - 2*x^2 - x^3 + 2*x^4 + 7*x^5 - 16*x^6 - 12*x^7 + 26*x^8 + 119*x^9 - 314*x^10 - 257*x^11 + 600*x^12 + 2940*x^13 + ...
the coefficients of which agree (in absolute value) with A(x) except at x^(4*n+3) for n >= 0.
Finally, compare the coefficients in A(x) to
x/(A(x)*A(-x)) = x - 3*x^3 + 7*x^5 - 32*x^7 + 119*x^9 - 687*x^11 + 2940*x^13 - 18404*x^15 + 84447*x^17 + ...
where x/(A(x)*A(-x)) = -i*(A(i*x) - A(-i*x))/2 and i^2 = -1.
SPECIFIC VALUES.
A(t) = 2 at t = 0.36331951384016303986306639613751667776159588776520452...
A(t) = 7/4 at t = 0.326966999214379107150878447476073620003819339260938...
A(t) = 5/3 at t = 0.310176414242953172528297628193378907011618213081175...
A(t) = 3/2 at t = 0.267595268495149277553658920442049656678199654428621...
A(t) = 4/3 at t = 0.209333706309773766820377034653096490187763605618596...
A(t) = 5/4 at t = 0.172077763804168042063566486393582731980710392315592...
A(t) = 6/5 at t = 0.146244889874475639762076320821916672953391854203454...
A(1/3) = 1.78546425081776353787146582798099929973363125010159...
A(1/4) = 1.44383991745968239677184978037034999614371014280141...
A(1/5) = 1.31105443576939701517901371991612546062464905386179...
A(1/6) = 1.23904680648959409260281764010309447249414731224581...
A(1/7) = 1.19385316740530832932821328815303856705214957870222...
A(1/8) = 1.16289039855382906980050154981133704244022138742405...
A(1/9) = 1.14037889673829352431661709747406163381220554084075...
A(1/10) = 1.1232896182662527402130760033096594937509712953868...
		

Crossrefs

Cf. A003714.

Programs

  • PARI
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*Ser(abs(Vec(1/(A +x*O(x^n)))))^2 ); polcoef(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas, in which i^2 = -1.
(1) A(x) = 1 + x*abs( 1/A(x) )^2.
(2.a) A(x)*A(-x) = 2*i*x/(A(i*x) - A(-i*x)).
(2.b) (A(x) - A(-x))/2 = x/(A(i*x)*A(-i*x)).
(3.a) [x^(4*n+1)] A(x) = [x^(4*n+1)] x/A(x)^2 for n >= 0.
(3.b) [x^(4*n+2)] A(x) = [x^(4*n+2)] -x/A(x)^2 for n >= 0.
(3.c) [x^(4*n+3)] A(x) = [x^(4*n+3)] -x/(A(x)*A(-x)) for n >= 0.
(3.d) [x^(4*n+4)] A(x) = [x^(4*n+4)] x/A(x)^2 for n >= 0.