A380710 G.f. A(x) satisfies A(x) = 1 + x*A(x)*abs( 1/A(x)^2 ).
1, 1, 3, 8, 19, 52, 130, 350, 887, 2386, 6178, 16318, 42618, 112632, 295072, 777628, 2039543, 5379446, 14139050, 37212510, 97869194, 257724328, 677880176, 1784741604, 4694887026, 12362045980, 32529481476, 85628088892, 225332403940, 593217232816, 1561270271280, 4109624293656, 10816272052191
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 19*x^4 + 52*x^5 + 130*x^6 + 350*x^7 + 887*x^8 + 2386*x^9 + 6178*x^10 + 16318*x^11 + 42618*x^12 + ... where A(x) = 1 + x*A(x)*abs( 1/A(x)^2 ). RELATED SERIES. A(x)^2 = 1 + 2*x + 7*x^2 + 22*x^3 + 63*x^4 + 190*x^5 + 542*x^6 + 1576*x^7 + 4447*x^8 + 12702*x^9 + 35694*x^10 + ... 1/A(x) = 1 - x - 2*x^2 - 3*x^3 - 2*x^4 - 6*x^5 - 4*x^6 - 21*x^7 - 2*x^8 - 94*x^9 - 52*x^10 - 270*x^11 - 84*x^12 + ... The absolute value of the series 1/A(x) begins abs(1/A(x)) = 1 + x + 2*x^2 + 3*x^3 + 2*x^4 + 6*x^5 + 4*x^6 + 21*x^7 + 2*x^8 + 94*x^9 + 52*x^10 + 270*x^11 + 84*x^12 + ... where abs(1/A(x)) = 2 - 1/A(x). The absolute value of the series 1/A(x)^2 starts as abs( 1/A(x)^2 ) = 1 + 2*x + 3*x^2 + 2*x^3 + 6*x^4 + 4*x^5 + 21*x^6 + 2*x^7 + 94*x^8 + 52*x^9 + 270*x^10 + 84*x^11 + 1420*x^12 + ... where abs(1/A(x)) = 1 + x*abs( 1/A(x)^2 ). The occurrence of signs in the expansion of 1/A(x)^2 has no obvious pattern. SPECIFIC VALUES. A(t) = 6 at t = 0.3521253776792082580595807444750553302449897977015... A(t) = 5 at t = 0.3456635940865550514487387712620006990835608970892... A(t) = 4 at t = 0.3353445841109354623507968372790782182828383144865... A(t) = 3 at t = 0.3163390965835750115994353781504066116184311812558... A(t) = 2 at t = 0.2703238890812296559650050596866021785482700845665... A(t) = 3/2 at t = 0.21007722302555848449805443502768527123106826520... A(1/3) = 3.8561630489436922241277332770003463055663996660504... A(1/4) = 1.7804507530929577349684197763505149006496008002510... A(1/5) = 1.4486680710862436038990844874974598495016144300066... A(1/6) = 1.3133683293052424032190784618054973634892830723346... A(1/7) = 1.2401905953633440750393755932922609861657646670157... A(1/8) = 1.1944676144162474770850469959020275729350893069119... A(1/9) = 1.1632456733394683634583953215349829285608074021805... A(1/10) = 1.140597094866485485300620048216088625981556459200... Let B(x) = abs(1/A(x)^2) then B(x) = (1 - 1/A(x))/x with B(r) = 1/r = 2.63223139752362698799211074224388216591957118984454... B(1/3) = 2.2220245975279023880827256557743784168347448472346... B(1/4) = 1.7533779055380819630180398010000489157697985459653... B(1/5) = 1.5485537371919237697954310652528503110387458910072... B(1/6) = 1.4315938140719938763450788025656509230188193709550... B(1/7) = 1.3557062711403811961362651790083206606967946565600... B(1/8) = 1.3024555011399714687578982713429488443700165977339...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1030
Programs
-
PARI
{a(n) = my(A=1); for(i=1, n, A = 1 + x*A*Ser(abs(Vec(1/(A^2 +x*O(x^n))))) ); polcoef(A, n)} for(n=0, 40, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = 1 + x*A(x)*abs( 1/A(x)^2 ).
(2) A(x) = 1 / (1 - x*abs( 1/A(x)^2 )).
(3) abs(1/A(x)) = 2 - 1/A(x).
(4) abs(1/A(x)) = 1 + x*abs( 1/A(x)^2 ).
(5) abs(1/A(x)) = abs( abs(1/A(x))/A(x) ) + x*abs( 1/A(x)^2 )/A(x).
(6) abs( abs(1/A(x))/A(x) ) = 2 - 2*abs(1/A(x)) + abs(1/A(x))^2.
(7) abs( 1/A(x)^2 ) = A(x) * (2 - abs(1/A(x))) * (abs(1/A(x)) - 1)/x.
(8) A(x) = 1 + A(x)^2 * (abs(1/A(x)) - 1) * (2 - abs(1/A(x))).
Comments