cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380723 E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2) / (1 - x*A(x)^2).

Original entry on oeis.org

1, 2, 21, 436, 13785, 589206, 31825381, 2080523880, 159761186577, 14097898530730, 1405926737063541, 156379679761925148, 19195200442017128425, 2577494115099820986174, 375845854490491567916805, 59145488004443221188738256, 9990898494797767848442559649, 1803160967691789114062089511250
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*n+1)^(k-1)*binomial(3*n-k, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n+1)^(k-1) * binomial(3*n-k,n-k)/k!.

A380719 E.g.f. A(x) satisfies A(x) = exp(x / (1 - x*A(x))^2) / (1 - x*A(x)).

Original entry on oeis.org

1, 2, 13, 157, 2817, 67541, 2033293, 73793399, 3137724033, 153046171657, 8425546124661, 516854537135795, 34963627698674689, 2585888583437930525, 207593192181190597629, 17978635157682679541311, 1670861912137958623651329, 165868047783912942721097873, 17517226956387964424430057829
Offset: 0

Views

Author

Seiichi Manyama, Jan 30 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n-k+1)^(k-1)*binomial(2*n, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+1)^(k-1) * binomial(2*n,n-k)/k!.
Showing 1-2 of 2 results.