A380723
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^2) / (1 - x*A(x)^2).
Original entry on oeis.org
1, 2, 21, 436, 13785, 589206, 31825381, 2080523880, 159761186577, 14097898530730, 1405926737063541, 156379679761925148, 19195200442017128425, 2577494115099820986174, 375845854490491567916805, 59145488004443221188738256, 9990898494797767848442559649, 1803160967691789114062089511250
Offset: 0
A380727
E.g.f. A(x) satisfies A(x) = exp(x * A(x)^3 / (1 - x*A(x)^3)) / (1 - x*A(x)^3).
Original entry on oeis.org
1, 2, 31, 988, 48533, 3240016, 274099723, 28110919712, 3389978711785, 470124480093184, 73718009095023191, 12897488652935429632, 2490884805057416903869, 526368104133213244928000, 120811269372167469194820547, 29928528196949304888405323776, 7959458742917430589011715194833
Offset: 0
A380946
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - x)^3 * exp(-3*x) ).
Original entry on oeis.org
1, 6, 111, 3678, 179073, 11588688, 938905551, 91542271824, 10444685410881, 1365936450693120, 201503447217869679, 33108736185915906816, 5997057218957213126721, 1187319940110958086623232, 255104922613608981003351375, 59120580081196768991316314112
Offset: 0
-
a(n, q=3, r=3, s=3, t=0, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);
Showing 1-3 of 3 results.