A380732 Numbers k such that the prime index of the largest prime dividing k is smaller than the minimum exponent in the prime factorization of k.
4, 8, 16, 27, 32, 64, 81, 128, 216, 243, 256, 432, 512, 625, 648, 729, 864, 1024, 1296, 1728, 1944, 2048, 2187, 2592, 3125, 3456, 3888, 4096, 5184, 5832, 6561, 6912, 7776, 8192, 10000, 10368, 11664, 13824, 15552, 15625, 16384, 16807, 17496, 19683, 20000, 20736
Offset: 1
Keywords
Examples
4 = 2^2 is a term since PrimePi(2) = 1 < 2. 9 = 3^2 is not a term since PrimePi(3) = 2 is not larger than the exponent 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..12735 (terms below 10^18)
- Eric Weisstein's World of Mathematics, Smooth Number.
- Wikipedia, Powerful number: Generalization (k-full number).
- Wikipedia, Smooth number.
- Index entries for sequences related to powerful numbers.
Crossrefs
Programs
-
Mathematica
Select[Range[2, 33000], Module[{f = FactorInteger[#]}, f[[-1, 1]] < Prime[Min[f[[;;, 2]]]]] &]
-
PARI
isok(k) = if(k == 1, 0, my(f = factor(k), e = f[,2]); f[#f~, 1] < prime(vecmin(e)));
Formula
Sum_{n>=1} 1/a(n) = Sum_{k>=1} f(k) = 0.57181100946173735203..., where f(k) = Sum_{i>=1} 1 / S_k(i) = g(k, k) - g(k+1, k), g(e, k) = Product_{j=1..k} (1 + Sum_{i >= e+1} 1/prime(j)^i), and S_k is defined in the Comments section.
Comments