A380747 Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
Examples
The array begins as: 1, 1, 1, 1, 1, 1, ... -1, 1, 3, 5, 7, 9, ... 0, 1, 8, 21, 40, 65, ... 0, 1, 20, 81, 208, 425, ... 0, 1, 48, 297, 1024, 2625, ... 0, 1, 112, 1053, 4864, 15625, ... 0, 1, 256, 3645, 22528, 90625, ... ...
Crossrefs
Programs
-
Mathematica
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *) A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *) A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten