A380757 Powers of primes that have a primitive root.
1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{nn = 2^8}, Complement[#, Array[2^# &, Floor@ Log2[#[[-1]]] + 2, 3]] &@ Union[{1}, Prime@ Range@ PrimePi[#[[-1]] ], #] &@ Select[Union@ Flatten@ Table[a^2*b^3, {b, Surd[#, 3]}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ]
-
Python
from sympy import primepi, integer_nthroot def A380757(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n if x<6 else int(n+x-3-sum(primepi(integer_nthroot(x,k)[0])-1 for k in range(1,x.bit_length()))) return bisection(f,n,n) # Chai Wah Wu, Feb 03 2025
Comments