cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A380914 E.g.f. A(x) satisfies A(x) = exp(x / (1 - x*A(x))) / (1 - x*A(x)).

Original entry on oeis.org

1, 2, 11, 115, 1797, 37621, 990313, 31452905, 1171010809, 50029903081, 2413119476781, 129719605920565, 7690829719605541, 498579900892422077, 35086898369381747281, 2663953520081549084401, 217057092837921132411249, 18892120969438125131207377, 1749385548844357561820688853
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=1, r=1, s=0, t=1, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (n-k+1)^(k-1) * binomial(2*n-k,n-k)/k!.

A380768 E.g.f. A(x) satisfies A(x) = exp(x * A(x) / (1 - x*A(x)^2)) / (1 - x*A(x)^2).

Original entry on oeis.org

1, 2, 19, 361, 10481, 411961, 20477185, 1232420449, 87148819441, 7083132622561, 650681345267801, 66674532650884753, 7540078499903430937, 932840158873518067537, 125332464410926005144241, 18173310946391976757487041, 2828702590649296770695135585, 470432341506749952275419504321
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=1, r=2, s=1, t=1, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n-k+1)^(k-1) * binomial(3*n-k,n-k)/k!.

A380772 E.g.f. A(x) satisfies A(x) = exp(x * (1 + x*A(x)^2)) * (1 + x*A(x)^2).

Original entry on oeis.org

1, 2, 13, 166, 3157, 80466, 2578969, 99734230, 4521335081, 235215564706, 13815024321061, 904313739020550, 65287579679979133, 5153929267246018546, 441668985219603417137, 40834603462763102240566, 4051601326622081640558673, 429423186979619018132841282
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2025

Keywords

Crossrefs

Cf. A380769.

Programs

  • PARI
    a(n, q=1, r=2, s=0, t=1, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial(r*u*n+((s-r)*u+t)*k+q*u, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (2*n-2*k+1)^(k-1) * binomial(2*n-k+1,n-k)/k!.

A380915 E.g.f. A(x) satisfies A(x) = exp(x / (1 - x*A(x)^3)) / (1 - x*A(x)^3).

Original entry on oeis.org

1, 2, 19, 421, 14453, 676741, 40225525, 2901397997, 246222420841, 24038780973913, 2654362957336481, 327087730518759937, 44498835149618922253, 6624743172003104909957, 1071295799491745519081629, 186999332904147675923216341, 35044146207707289182759039825
Offset: 0

Views

Author

Seiichi Manyama, Feb 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, q=1, r=3, s=0, t=1, u=1) = q*n!*sum(k=0, n, (r*n+(s-r)*k+q)^(k-1)*binomial((r*u+1)*n+((s-r)*u+t-1)*k+q*u-1, n-k)/k!);

Formula

a(n) = n! * Sum_{k=0..n} (3*n-3*k+1)^(k-1) * binomial(4*n-3*k,n-k)/k!.
Showing 1-4 of 4 results.