cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380790 Length of the n-th Golomb ruler constructed by the Paul Erdős and Pál Turán formula.

Original entry on oeis.org

20, 110, 308, 1254, 2106, 4760, 6650, 11822, 23954, 29202, 49950, 68060, 78518, 102460, 147446, 203432, 225090, 298418, 354858, 386316, 489484, 568052, 700964, 907920, 1025150, 1086856, 1218944, 1289034, 1436456, 2039620, 2238790, 2561900, 2675472, 3296774, 3430418
Offset: 2

Views

Author

Darío Clavijo, Feb 03 2025

Keywords

Comments

In October of 1941 Paul Erdős and Pál Turán found that a Golomb ruler could be constructed for every odd prime p.
Such a ruler has the property that the mark or notches are defined by: notch(k) = 2pk + (k^2 mod p) for k in {0..p-1}, with p=A000040(n).
Empirical observation: a(n) satisfies p^3-p^2 <= a(n)/p^3 <= 0.9999.
Except for n=2, a(n) is divisible by p.
Also partial sums of A217793.

Examples

			 n | p  | Golomb ruler notches                             | a(n)
---+----+--------------------------------------------------+-------
 2 | 3  | 0, 7,  13                                        | 20
 3 | 5  | 0, 11, 24, 34, 41                                | 110
 4 | 7  | 0, 15, 32, 44, 58, 74,  85                       | 308
 5 | 11 | 0, 23, 48, 75, 93, 113, 135, 159, 185, 202, 221  | 1254
		

Crossrefs

Programs

  • PARI
    a(n)= if(n==2, return(20));  my(p=prime(n)); if(bitand(p, 3)==1, return((p*(p-1)*(2*p+1))/2)); if(bitand(p, 3)==3, return((p*(p-1)*(2*p+1))/2 - p * qfbclassno(-p)));
  • Python
    from sympy import prime
    from math import isqrt
    def a(n):
      p = prime(n)
      if p & 3 == 1: return (p*(p-1)*(2*p+1))//2
      m = isqrt(p-1)
      return (p-1) * p**2 + (m*(m+1)*(2*m+1))//6 + sum(pow(k,2,p) for k in range(m+1,p))
    print([a(n) for n in range(2, 37) ])
    

Formula

a(n) = Sum_{k=0..p-1} (2*k*p + k^2 mod p), where p is the n-th prime.
a(n) = (p-1)*p^2 + 1 + Sum_{k=2..p-1} (k^2 mod p), where p is the n-th prime.
a(n) = (p-1)*p^2 + A000330(m) + Sum_{k=m+1..p-1} (k^2 mod p), where m = floor(sqrt(p-1)) and p is the n-th prime.
a(n) = (p-1)*p^2 + p*(p-1)*(p+1)/12 - 2*p*(Sum_{k=1..(p-1)/2} floor(k^2/p)), where p is the n-th prime.
a(n) = A100104(A000040(n)) + A048153(A000040(n)) - 1.
a(n) = A100104(A000040(n)) + A076409(n).
a(n) = A160378(A000040(n)), iif A000040(n) = 1 (mod 4).
a(n) = A160378(A000040(n)) - A000040(n)*A355879(n), iif A000040(n) = 3 (mod 4).
a(n) < A000040(n)^3.
a(n) > A000040(n)^3 - A000040(n)^2.
a(n) = 0 mod A000040(n) for n >= 3.
a(n) = Sum_{k=0..A000040(n)-1} A217793(n - 1, k).
a(n) = A135177(n) + A127921(n) - 2*p*(Sum_{k=1..(p-1)/2} floor(k^2/p)), where p = A000040(n).