A380792 a(n) is the largest triangular number that is the concatenation of two n-digit numbers 2*x and x.
21, 9045, 890445, 88904445, 8889044445, 888890444445, 88888904444445, 8888889044444445, 888888890444444445, 88888888904444444445, 8888888889044444444445, 973609801090486804900545, 88888888888904444444444445, 8888888888889044444444444445, 931379640537060465689820268530
Offset: 1
Examples
a(3) = 890445 because 890445 = 1334 * 1335/2 is a triangular number and is the concatenation of the two 3-digit numbers 890 = 2*445 and 445, and no larger number works.
Links
- Robert Israel, Table of n, a(n) for n = 1..100
- Mathematics StackExchange, What is the largest 6-digit number ABCDEF where ABC = 2DEF which can be expressed as the sum of the first n natural numbers?
Programs
-
Maple
g:= proc(d) local a,b,n, ymax,x,y; ymax:= -1; for a in numtheory:-divisors(2*(2*10^d+1)) do b:= 2*(2*10^d+1)/a; if igcd(a,b)>1 then next fi; n:= chrem([0,-1],[a,b]); x:= n*(n+1)/2; y:= x/(2*10^d+1); if y < 10^(d-1) or 2*y >= 10^d then next fi; if y > ymax then ymax:= y fi od; (2*10^d+1)*ymax end proc: map(g, [$1..25]);
Comments