cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380826 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-3*x) / (1 + x*exp(-2*x)) ).

Original entry on oeis.org

1, 4, 43, 810, 22273, 811728, 36979467, 2025462736, 129748802401, 9522843081984, 788169731306059, 72641846664240384, 7379343546762675873, 819269203286474309632, 98698960328223628470379, 12824232015954542746048512, 1787731339345567827140060737, 266157254062414638948185210880
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (n+2*k+3)^k*binomial(n, k)/(k+1)!);

Formula

E.g.f. A(x) satisfies A(x) = exp(3*x*A(x)) / ( 1 - x*exp(x*A(x)) ).
a(n) = n! * Sum_{k=0..n} (n+2*k+3)^k * binomial(n,k)/(k+1)!.

A380828 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x) / (1 + x) ).

Original entry on oeis.org

1, 3, 26, 398, 8904, 264072, 9790192, 436382256, 22748241024, 1358633214080, 91503397265664, 6862436244211968, 567252637423922176, 51244493078278198272, 5023312927780022323200, 531082672018567209801728, 60239691905397303186849792, 7297357396264290237329473536
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (2*n+2)^k*binomial(n, k)/(k+1)!);

Formula

E.g.f. A(x) satisfies A(x) = exp(2*x*A(x)) / ( 1 - x*exp(2*x*A(x)) ).
a(n) = n! * Sum_{k=0..n} (2*n+2)^k * binomial(n,k)/(k+1)!.
a(n) = A376093(n+1)/(n+1).
Showing 1-2 of 2 results.