A380849 Lesser of a pair of amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.
27940, 112420, 150368, 156840, 225060, 450340, 569376, 925920, 1102200, 1211232, 1802020, 2196592, 2423648, 3377640, 3604260, 4612644, 4874400, 4949160, 5092440, 6375336, 6632808, 6786340, 7155940, 7208740, 7626900, 7685128, 9443060, 9569780, 9643400, 9678020
Offset: 1
Examples
27940 is a term since A380845(27940) - 27940 = 36068 > 27940 and A380845(36068) - 36068 = 27940.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..12000
Programs
-
Mathematica
f[n_] := Module[{h = DigitCount[n, 2, 1]}, DivisorSum[n, # &, # < n && DigitCount[#, 2, 1] == h &]]; seq[lim_] := Module[{s = {}, m}, Do[m = f[n]; If[m > n && f[m] == n, AppendTo[s, n]], {n, 1, lim}]; s]; seq[10^6]
-
PARI
f(n) = {my(h = hammingweight(n)); sumdiv(n, d, d * (d < n && hammingweight(d) == h));} list(lim) = {my(m); for(n = 1, lim, m = f(n); if(m > n && f(m) == n, print1(n, ", ")));}
Comments