cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380865 Triangle read by rows: T(n, k) = 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1).

Original entry on oeis.org

1, 2, 4, 6, 24, 16, 20, 120, 160, 64, 70, 560, 1120, 896, 256, 252, 2520, 6720, 8064, 4608, 1024, 924, 11088, 36960, 59136, 50688, 22528, 4096, 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384, 12870, 205920, 960960, 2306304, 3294720, 2928640, 1597440, 491520, 65536
Offset: 0

Views

Author

Peter Luschny, Feb 07 2025

Keywords

Examples

			Triangle begins:
  [0]    1;
  [1]    2,     4;
  [2]    6,    24,     16;
  [3]   20,   120,    160,     64;
  [4]   70,   560,   1120,    896,    256;
  [5]  252,  2520,   6720,   8064,   4608,   1024;
  [6]  924, 11088,  36960,  59136,  50688,  22528,   4096;
  [7] 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384;
		

Crossrefs

Cf. A038234, A380851, A097807, A128908, A380864 (row sums).

Programs

  • Maple
    T := (n, k) -> 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1):
    seq(print(seq(simplify(T(n, k)), k=0..n)), n=0..9);
  • Mathematica
    T[n_, k_] := 4^n Binomial[n, k] Hypergeometric2F1[1/2, k - n, k + 1, 1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten

Formula

Consider a family of Jacobi polynomials defined with a rational number r as
J(n, k, r, x) = denominator(r)^(2*n)*JacobiP(n - k, k, r - n, x).
For r = -1/2 and x = -1 is J(n, k, r, x) = T(n, k).
For r = 1/2 and x = -1 is J(n, k, r, x) = A380851(n, k).
For r = 1/2 or r = -1/2 and x = 1 is J(n, k, r, x) = A038234(n, k).
The choice r = n and x = -1 gives Riordan array A097807, (1/(1 + x), 1).
The choice r = k and x = -1 gives Riordan array A128908, (1, x/(1 - x)^2).
The choice r = n and x = 1 gives the Pascal triangle.
T(n, k) = 4^n*binomial(n, k)*hypergeom([1/2, k - n], [k + 1], 1).