A380865 Triangle read by rows: T(n, k) = 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1).
1, 2, 4, 6, 24, 16, 20, 120, 160, 64, 70, 560, 1120, 896, 256, 252, 2520, 6720, 8064, 4608, 1024, 924, 11088, 36960, 59136, 50688, 22528, 4096, 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384, 12870, 205920, 960960, 2306304, 3294720, 2928640, 1597440, 491520, 65536
Offset: 0
Examples
Triangle begins: [0] 1; [1] 2, 4; [2] 6, 24, 16; [3] 20, 120, 160, 64; [4] 70, 560, 1120, 896, 256; [5] 252, 2520, 6720, 8064, 4608, 1024; [6] 924, 11088, 36960, 59136, 50688, 22528, 4096; [7] 3432, 48048, 192192, 384384, 439296, 292864, 106496, 16384;
Programs
-
Maple
T := (n, k) -> 2^(2*n)*JacobiP(n - k, k, -1/2 - n, -1): seq(print(seq(simplify(T(n, k)), k=0..n)), n=0..9);
-
Mathematica
T[n_, k_] := 4^n Binomial[n, k] Hypergeometric2F1[1/2, k - n, k + 1, 1]; Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
Formula
Consider a family of Jacobi polynomials defined with a rational number r as
J(n, k, r, x) = denominator(r)^(2*n)*JacobiP(n - k, k, r - n, x).
For r = -1/2 and x = -1 is J(n, k, r, x) = T(n, k).
For r = 1/2 and x = -1 is J(n, k, r, x) = A380851(n, k).
For r = 1/2 or r = -1/2 and x = 1 is J(n, k, r, x) = A038234(n, k).
The choice r = n and x = -1 gives Riordan array A097807, (1/(1 + x), 1).
The choice r = k and x = -1 gives Riordan array A128908, (1, x/(1 - x)^2).
The choice r = n and x = 1 gives the Pascal triangle.
T(n, k) = 4^n*binomial(n, k)*hypergeom([1/2, k - n], [k + 1], 1).