cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380880 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-3*x*exp(x)) ).

Original entry on oeis.org

1, 3, 33, 657, 19317, 756663, 37153071, 2196991317, 152107121481, 12074764795947, 1081507189545219, 107911010079715857, 11871250914793342797, 1427601609871824349407, 186326851375925627135127, 26232637698244127999077677, 3962908338833364902518738449, 639433805204122165558890771027
Offset: 0

Views

Author

Seiichi Manyama, Feb 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, k^(n-k)*(3*n+3)^(k-1)*binomial(n, k));

Formula

E.g.f. A(x) satisfies A(x) = exp(3 * x * A(x) * exp(x * A(x))).
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A380881.
a(n) = 3 * Sum_{k=0..n} k^(n-k) * (3*n+3)^(k-1) * binomial(n,k).

A380972 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x*exp(2*x)) ).

Original entry on oeis.org

1, 1, 7, 76, 1237, 26816, 728899, 23866816, 915129961, 40237778944, 1996402790431, 110351882157056, 6725593733125117, 448106469169905664, 32404532970216803803, 2527793703574203252736, 211589448225820679029969, 18917558526854862344290304, 1799285901282568752019291063
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (2*k)^(n-k)*(n+1)^(k-1)*binomial(n, k));

Formula

E.g.f. A(x) satisfies A(x) = exp( x*A(x) * exp(2*x*A(x)) ).
a(n) = Sum_{k=0..n} (2*k)^(n-k) * (n+1)^(k-1) * binomial(n,k).
Showing 1-2 of 2 results.