A380885 a(n) is the smallest multiple m*n (m > 1) of n which contains every decimal digit of n, including repetitions.
10, 12, 30, 24, 15, 36, 70, 48, 90, 100, 110, 120, 130, 140, 105, 160, 170, 108, 190, 120, 126, 220, 230, 240, 125, 260, 270, 280, 290, 300, 310, 320, 330, 340, 315, 360, 370, 380, 390, 240, 164, 294, 344, 440, 405, 460, 470, 384, 294, 150, 153, 520, 530, 540
Offset: 1
Examples
a(1) = 10 since 10 is the smallest multiple of 1 which contains every digit of 1. a(15) = 7*15 = 105 since every digit of 15 is present in 105 (note A087217(15) = 150). a(35) = 315 = 9*35 = A087217(35) because here digits 3 and 5 are in order. a(41) = 4*41 = 164, the smallest multiple of 41 containing digits 1 and 4. This is the first prime departure from A087217, since A087217(41) = 410.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..10^5.
Crossrefs
Cf. A087217.
Programs
-
Mathematica
Reap[Do[d = DigitCount[n]; k = 2; While[! AllTrue[DigitCount[#] - d, # >= 0 &] &[n*k], k++]; Sow[k *= n], {n, 120}] ][[-1, 1]] (* Michael De Vlieger, Feb 20 2025 *)
-
PARI
f(d) = vector(10, i, #select(x->(x==(i-1)), d)); isok(k, v) = my(w=f(digits(k))); for (i=1, 10, if (v[i] > w[i], return(0));); return(1); a(n) = my(k=2*n, v=f(digits(n))); while(!isok(k, v), k+=n); k; \\ Michel Marcus, Feb 20 2025
-
Python
from collections import Counter def a(n): c = Counter(str(n)) return next(mn for mn in range(2*n, 11*n, n) if Counter(str(mn)) >= c) print([a(n) for n in range(1, 55)]) # Michael S. Branicky, Feb 23 2025
Formula
a(n) <= 10*n.
Extensions
More terms from Michel Marcus, Feb 20 2025
Comments