cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A380909 a(n) = numerator(n!! / (n - 1)!!).

Original entry on oeis.org

1, 1, 2, 3, 8, 15, 16, 35, 128, 315, 256, 693, 1024, 3003, 2048, 6435, 32768, 109395, 65536, 230945, 262144, 969969, 524288, 2028117, 4194304, 16900975, 8388608, 35102025, 33554432, 145422675, 67108864, 300540195, 2147483648, 9917826435, 4294967296, 20419054425
Offset: 0

Views

Author

Peter Luschny, Feb 09 2025

Keywords

Comments

Perhaps surprisingly, the double factorial is also defined for n = -1. The reason for this is that (-1/2)! is well defined. See the first formula.

Crossrefs

Cf. A380910 (denominator), A006882, A095987, A004730, A004731.

Programs

  • Maple
    seq(numer(doublefactorial(n) / doublefactorial(n - 1)), n = 0..20);
    # Alternative:
    a := n -> numer((GAMMA(n/2 + 1) / GAMMA(n/2 + 1/2)) * ifelse(n::even, sqrt(Pi), 2/sqrt(Pi))):
    seq(a(n), n = 0..35);
  • Mathematica
    A380909[n_] := Numerator[n!!/(n - 1)!!]; Array[A380909, 50, 0] (* or *)
    Numerator[FoldList[#2/# &, 1, Range[49]]] (* Paolo Xausa, Feb 11 2025 *)
  • Python
    from fractions import Fraction
    from functools import cache
    @cache
    def R(n: int) -> Fraction:
        if n == 0: return Fraction(1, 1)
        return Fraction(n, 1) / R(n - 1)
    def aList(upto:int) -> list[int]:
        return [R(n).numerator for n in range(upto + 1)]
    print(aList(35))

Formula

r(n) = ((n/2)! / ((n - 1) / 2)!) * [sqrt(Pi) if n is even otherwise 2/sqrt(Pi)].
r(n) = n / r(n - 1) for n >= 1.
r(n) ~ sqrt(n)*exp(1/(4*n))*(Pi/2)^(cos(Pi*n)/2).
Product_{k=0..n} r(k) = A006882(n).
a(n) = numerator(r(n)).
a(n) = A006882(n)/A095987(n). - R. J. Mathar, Feb 10 2025
a(n) = A004731(n+1). - R. J. Mathar, Feb 10 2025