A380910 a(n) = denominator(n!! / (n - 1)!!).
1, 1, 1, 2, 3, 8, 5, 16, 35, 128, 63, 256, 231, 1024, 429, 2048, 6435, 32768, 12155, 65536, 46189, 262144, 88179, 524288, 676039, 4194304, 1300075, 8388608, 5014575, 33554432, 9694845, 67108864, 300540195, 2147483648, 583401555, 4294967296, 2268783825, 17179869184
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
- Gamma Function, Digital library of mathematical functions, Feb. 2024.
Programs
-
Maple
seq(denom(doublefactorial(n) / doublefactorial(n - 1)), n = 0..20); # Alternative: a := n -> denom((GAMMA(n/2 + 1) / GAMMA(n/2 + 1/2)) * ifelse(n::even, sqrt(Pi), 2/sqrt(Pi))): seq(a(n), n = 0..35);
-
Mathematica
A380910[n_] := Denominator[n!!/(n - 1)!!]; Array[A380910, 50, 0] (* or *) Denominator[FoldList[#2/# &, 1, Range[49]]] (* Paolo Xausa, Feb 11 2025 *)
-
Python
from fractions import Fraction from functools import cache @cache def R(n: int) -> Fraction: if n == 0: return Fraction(1, 1) return Fraction(n, 1) / R(n - 1) def aList(upto:int) -> list[int]: return [R(n).denominator for n in range(upto + 1)] print(aList(37))
Formula
r(n) = ((n/2)! / ((n - 1) / 2)!) * [sqrt(Pi) if n is even otherwise 2/sqrt(Pi)].
a(n) = denominator(r(n)).
a(n) = A004730(n-1). - R. J. Mathar, Feb 10 2025