A380924 Integers k such that k = Sum k/(p_i + j), where p_i are the prime factors of k (with multiplicity). Case j = 3.
32, 729, 756, 784, 16875, 17500, 18522, 19208, 22950, 23800, 31212, 32368, 37000, 50320, 243760, 390625, 428750, 453789, 470596, 531250, 562275, 570375, 583100, 591500, 722500, 764694, 775710, 793016, 804440, 874125, 906500, 982600, 1188810, 1232840, 1250600
Offset: 1
Examples
562275 = 3^3*5^2*7^2*17 = 562275*3/(3+3) + 562275*2/(5+3) + 562275*2/(7+3) + 562275/(17+3)
Programs
-
Maple
with(numtheory): P:=proc(q, h) local k, n, v; v:=[]; for n from 1 by 2 to q do if n=add(n*k[2]/(k[1]+h), k=ifactors(n)[2]) then v:=[op(v), n]; fi; od; op(v); end: P(1250600, 3);